matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnunglineare abhängigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - lineare abhängigkeit
lineare abhängigkeit < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare abhängigkeit: aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:35 So 13.03.2005
Autor: bigwave

Wäre nett, wenn das einer mal schnell lösen könnte:

Wie müssen die parameter alpha und beta numerisch gewählt werden, damit die folgenden Vektoren linear abhängig sind?

x= (-3,alpha,beta) y= (4,-2,-2) z= (-2,1,-2)

Nach meinen Rechnungen erhalte ich: alpha=1,5 und beta=(3x-6y)/x
wobei man ja numerische Lösungen suchen soll. Stimmt denn nun das beta, oder kann man das genau bestimmen?

danke für eure beteiligung.
grüße aus mannheim

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
lineare abhängigkeit: alpha=3/2, beta=beliebig
Status: (Antwort) fertig Status 
Datum: 17:44 So 13.03.2005
Autor: Nam

Hallo bigwave,

die korrekte Lösung ist:
[mm]\alpha = \frac{3}{2}[/mm]
[mm]\beta \in \IR[/mm] beliebig

Rechenweg:
[mm]\vmat{ -3 & 4 & -2 \\ \alpha & -2 & 1 \\ \beta & -2 & -2} = -12 + 4\beta +4\alpha - 4\beta - 6 + 8\alpha = 12\alpha - 18 =: det(a)[/mm]

Setze det(a) = 0, in diesem Fall sind die Vektoren x,y,z linear abhängig:
[mm]det(a) = 0 = 12\alpha - 18 \Rightarrow \alpha = \frac{18}{12} = \frac{3}{2}[/mm]





Weiter ist meine Vermutung, dass
[mm]x = c_y y + c_z z[/mm] mit gewissen [mm]c_y, c_z \in \IR[/mm]

Also (mit dem Gauß Algorithmus):
[mm]\left. \begin{matrix} 4 & -2 \\ -2 & -2 \end{matrix} \right| \begin{matrix}-3 \\ \beta\end{matrix}[/mm]

[mm]\left. \begin{matrix} 4 & -2 \\ 0 & -3 \end{matrix} \right| \begin{matrix}-3 \\ \beta -\frac{3}{2} \end{matrix}[/mm]

[mm]\Rightarrow c_z = -\frac{1}{3}\beta + \frac{1}{2}[/mm]

[mm]\Rightarrow c_y = -\frac{1}{6}\beta - \frac{1}{2}[/mm]

Mache mal die Probe, wenn du z. B. [mm]\beta = 0[/mm] einsetzt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]