matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / Vektorrechnunglineare Erweiterung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra / Vektorrechnung" - lineare Erweiterung
lineare Erweiterung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Erweiterung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:28 Mi 23.11.2011
Autor: hula

Guten Abend!

Ich habe folgende Frage:

Wenn ich einen Vektorraum $ V $ habe, nicht zwingend endlich dimensional, und einen Teilraum $ M $, sowie eine lineare Abbildung $ f: M [mm] \to [/mm] V $. Wie kann ich diese Abbildung linear fortsetzen?
Ich wäre sehr an einem Beweis interessiert. Falls es diesen online gibt, bin ich auch für eine Referenz dankbar.

greetz

hula

        
Bezug
lineare Erweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:40 Mi 23.11.2011
Autor: leduart

Hallo
geht es nicht etwas konkreter? Warum gilt deine Abb. nicht auf ganz V?
Gruss leduart

Bezug
                
Bezug
lineare Erweiterung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:57 Mi 23.11.2011
Autor: hula

Naja, weil sie halt nur auf einem Teilraum definiert ist. Das ganze spielt in einem Beweis, in dem nichts konkret gegeben ist! Es geht um folgenden Satz

Seien $ [mm] E_1, E_2, E_3 [/mm] $ Vektorräume, $ f: [mm] E_1 \to E_3 [/mm] , [mm] g:E_1 \to E_2 [/mm] $ lineare Abbildungen. Dann existiert eine lineare Abbildung $ h: [mm] E_2 \to E_3 [/mm] $ mit f(x)= h(g(x)) genau dann wenn $ [mm] g^{-1}(0) \subset f^{-1}(0)$. [/mm]
Den Beweis verstehe ich, für die eine Richtung definiert man die Abbildung $ h: [mm] g(E_1) \to E_3 [/mm] $ nach $ h(g(x)) := f(x) $. Zeigt das dies wohldefiniert ist etc, und dann steht am Schluss, wie oben erwähnt: Extend $ h $ to a linear map on $ [mm] E_2 [/mm] $.
Nun will ich wissen, wieso das geht, resp. wie man das macht. Wie gesagt, die Räume müssen nicht endlich dimensional sein.


greetz

hula

Bezug
        
Bezug
lineare Erweiterung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:05 Do 24.11.2011
Autor: fred97


> Guten Abend!
>  
> Ich habe folgende Frage:
>
> Wenn ich einen Vektorraum [mm]V[/mm] habe, nicht zwingend endlich
> dimensional, und einen Teilraum [mm]M [/mm], sowie eine lineare
> Abbildung [mm]f: M \to V [/mm]. Wie kann ich diese Abbildung linear
> fortsetzen?
>  Ich wäre sehr an einem Beweis interessiert. Falls es
> diesen online gibt, bin ich auch für eine Referenz
> dankbar.
>  

Verschaffe Dir einen Komplementärraum zu M, also einen Unterraum N von V mit

                 $V=M [mm] \oplus [/mm] N$

Definiere $h:V [mm] \to [/mm] V$ wie folgt: ist v [mm] \in [/mm] V , so gibt es eindeutig bestimmte x [mm] \in [/mm] M und y [mm] \in [/mm] N mit v=x+y.

                setze  h(v):=f(x).

Dann ist h linear und es ist f=h auf M.

FRED

> greetz
>  
> hula


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]