lineare Differentialgleichung < Analysis < Hochschule < Mathe < Vorhilfe
|
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Liebe Leute,
ich bräuchte echt euer Hilfe mal. Wäre ganz ganz nett, wenn jemand mir helfen könnte.
Ich hätte eine Aufgabe, an dem ich schon Stunden gesessen habe, aber nicht lösen konnte. Also Folgendes:
- Einem Patienten werden kontinuierlich b=100 mg/h eines Medikamentes zugeführt. Gleichzeitig wird das Medikament mit einer konstanten Rate von 1000% pro Stunde abgebaut.
a.) Erstelle eineDifferentialgleichung [mm] \bruch{d}{dt} [/mm] c(t)= f(c(t)), welche die zeitliche Entwicklung der Medikamentenstoffemenge c(t) beschreibt.
Mein Ansatz: Ich weiss nicht, ob die Aufgabe überhaupt einen Sinn macht. Denn wie ich es verstanden habe würde die Gleichung für die Stoffentwicklung c(t) gefolgt aussehen:
c(t) = (a+100*t ) - 10 (a+ 100*t), wobei a eine Anfangskonstante ist, d.h. ein Betrag an dem Medikamentenstoff im Körper vor dem Zufuhr. Die 10 ist ja die 1000% von der ganzen Stoffmenge im Körper, der abgebaut werden soll, oder?
Dann würde aber die Gleichung negativ werden, da ja mehr abgebaut wird als überhaupt im Körper vorhanden ist. Ich komme echt nicht weiter. Bitte bitte helft mir.
Vielen Dank schon mal im Voraus :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 00:09 Mo 18.04.2005 | Autor: | Max |
Hallo Susi,
dir ein herzliches
Ich denke mal, dass die differentielle Änderung sich auf die bis dahin vorhandene Menge bezieht. Würde das Medikament mit 1000% in einer Stunde abgebaut, wäre die Differentialgleichung:
[mm] $\frac{dc}{dt}(t)=-10c(t)$
[/mm]
Da aber nun 100mg/h zugeführt werden, ist die DGL:
[mm] $\frac{dc}{dt}(t)=100-10c(t)$
[/mm]
wobei alle Angaben in mg/h gegeben sind. Löst man die DGL erhält man mit $c(t)$ die Medikamentenmenge (in mg) zu jedem Zeitpunkt t (in h).
Gruß Max
|
|
|
|
|
Also erstmal vielen Dank für die schnelle Antwort Max.
Mir ist Deine Lösung völlig verständlich. Denn [mm] \bruch{d}{dt} [/mm] c(t) beschrebt ja schon die Zustandsänderung zum Zeitpunkt t. Da muss ich ja nicht mehr 100*t schreiben... hehe. Dumm von mir. Bloss wie kann ich die DGL lösen? Ich habe immer bei der Lösung der DGLs Probleme. Verständnisfrage? Ist hier Lösen der DGL das Finden von c(t) gemeint? Wie kann ich dabei vorgehen? Kann mir jemand sagen, wie ich immer vorgehen soll?
Hast Du, Max einen Tipp für mich?
Danke schön.
|
|
|
|
|
Hallo Susi,
diese Frage sprengt den Umfang eines Antwortartikels. Deshalb möchte ich Dir das mal an diesem Beispiel vorrechnen.
Wir haben also $ [mm] \frac{dc}{dt}(t)=100-10c(t) [/mm] $ zu lösen. Dazu nehmen wir uns zunächst die homogene Dgl. und wenden die Trennung der Veränderlichen an:
$ [mm] \frac{dc}{dt}(t) [/mm] = -10c(t) $ ist die homogene Dgl.
$ [mm] -\frac{dc}{10c} [/mm] = dt $; und nun integrieren:
$ [mm] \integral{-\frac{1}{10c}}dc [/mm] = [mm] \integral{dt} [/mm] $; Integration ausführen und die Integrationskonstanten zu einer zusammenfassen:
[mm] $-\bruch{ln(c)}{10} [/mm] = [mm] k^{\*} [/mm] + t$; nach $c$ auflösen und [mm] $k:=e^{-10k^{\*}}$
[/mm]
$c = [mm] k*e^{-10*t}$
[/mm]
Um die ursprüngliche (nicht homogene) Dgl. zu lösen, verwenden wir die Methode der Variation der Konstanten. Das bedeutet, dass (vorübergehend) die Konstante als abhängig von t angenommen wird.
Ansatz:
[mm] $c(t)=k(t)*e^{-10*t}$; [/mm] in die Dgl. einsetzen:
[mm] $k'(t)*e^{-10*t}-10k*(t)*e^{-10*t}=100-10*k(t)*e^{-10*t}$.
[/mm]
Wenn wir alles richtig gemacht haben, muss k(t) rausfliegen. Und tatsächlich:
[mm] $k'(t)=100*e^{10*t}$.
[/mm]
Das muss jetzt noch integriert werden:
[mm] $k(t)=10*e^{10*t}$.
[/mm]
Dieses k(t) in den Ansatz eingesetzt ergibt die spezielle Lösung $c(t)=10$. Die allgemeine Lösung erhalten wir endlich durch Addition der "homogenen Lösung" und der speziellen Lösung:
[mm] $c(t)=k*e^{-10*t}+10$.
[/mm]
Für unseren Anfangswert $c(0)=100$ (erste Medikamentengabe zur Zeit $t=0$) muss also $100=k+10$gelten.
Zum guten Schluss setzen wir k=90 ein und *TUSCH*
$c(t)=10+90*exp(-10*t)$
puuh...
Andere Dgln können unter Umständen andere Lösungsmethoden erfordern. Es gibt reichlich einführende Literatur zu dem Thema.
Viel Erfolg und
Peter
|
|
|
|
|
Vielen vielen Dank.
Das Problem habe ich jetzt mit Deiner Hilfe lösen können.
Ich bedanke mich noch mal herzlichst für Deine schnelle Hilfe.
Weiter so :) hoffentlich stehst Du mir auch bei den zukünftigen Problemstellungen zur Hilfe :D
Bis dann
Susi
|
|
|
|