lin. un. Vektor zu einer Ebene < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Erzeugen Sie einen linear unabhänigen Vektor zur Ebene [mm] $E=\{(x,y,z)\in \IR³|x-2y+5z=0\}$, [/mm] der durch den Punkt P=(-1,3,-5) geht |
Ich weiß nicht, wie ich ein linear unabhänigen Vektor zu dieser Ebene mit einem allgemeinen Verfahren finden kann. Ich habe zwei lin. unab. norm. Vektoren in der Ebene schon gefunden, jedoch eher durch raten als durch Systematik. [mm] v_1=(2/ \wurzel{5},1/ \wurzel{5},0) [/mm] und [mm] v_2=(1/3,-2/3,-1/3)
[/mm]
nun soll ich dazu noch ein dritten lin. unabhängigen Vektor finden, jedoch weiß ich nicht wie ich systematisch an die sache rangehen kann. generell weiß ich, das ich eine Gerade finden muss, die durch den Punkt P geht und die Ebene schneidet. daher muss ich ja zuerst einmal einen linear unabhängigen vektor finden oder??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Hallo Koenigspinguin,
> Erzeugen Sie einen linear unabhänigen Vektor zur Ebene
> [mm]E=\{(x,y,z)\in \IR³|x-2y+5z=0\}[/mm], der durch den Punkt
> P=(-1,3,-5) geht
> Ich weiß nicht, wie ich ein linear unabhänigen Vektor zu
> dieser Ebene mit einem allgemeinen Verfahren finden kann.
> Ich habe zwei lin. unab. norm. Vektoren in der Ebene schon
> gefunden, jedoch eher durch raten als durch Systematik.
> [mm]v_1=(2/ \wurzel{5},1/ \wurzel{5},0)[/mm] und
> [mm]v_2=(1/3,-2/3,-1/3)[/mm]
Ein systematisches Vorgehen findet sich hier.
> nun soll ich dazu noch ein dritten lin. unabhängigen
> Vektor finden, jedoch weiß ich nicht wie ich systematisch
> an die sache rangehen kann. generell weiß ich, das ich eine
> Gerade finden muss, die durch den Punkt P geht und die
> Ebene schneidet. daher muss ich ja zuerst einmal einen
> linear unabhängigen vektor finden oder??
Der steht auch schon da: Normalenform einer Ebene
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
Gruß
MathePower
|
|
|
|