matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertel'hospital?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - l'hospital?
l'hospital? < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

l'hospital?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:51 Di 10.04.2007
Autor: snappy

ich soll das verhalten bei +/- unendlich untersuchen
die fkt.lautet [mm] \bruch{x}{e^{x}} [/mm] laut lösung kann ich - [mm] \infty [/mm]
ohne L'hospital lösen aber + [mm] \infty [/mm] nicht. kann mir jemand erklären warum dass so ist?hab mir schon einige seiten zu l'hospital durchgelesen aber ich verstehe nicht wann ich das mache und wann nicht?
mfg snappy

        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:03 Di 10.04.2007
Autor: Fry

Hallo,

das hängt wohl damit zusammen, dass
[mm] \limes_{n\rightarrow - \infty} \bruch{x}{e^x} [/mm] = [mm] "\bruch{-\infty}{0}" [/mm] ist, hier kannst du L´Hospital nicht anwenden, da der Grenzwert von Zähler und Nenner gleich sein muss, wie bei [mm] \limes_{n\rightarrow \infty} \bruch{x}{e^x} [/mm] = [mm] "\bruch{\infty}{\infty}" [/mm]

Grüsse
Fry

Bezug
                
Bezug
l'hospital?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Di 10.04.2007
Autor: snappy

aber ist [mm] -\infty [/mm] durch 0 = 0? oder hab ich grad ein brett vorm kopf??

Bezug
                        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:15 Di 10.04.2007
Autor: Stefan-auchLotti


> aber ist [mm]-\infty[/mm] durch 0 = 0? oder hab ich grad ein brett
> vorm kopf??

Hi,

das mit dem Brett bezweilfle ich, ;-) vermutlich einfach zu schnell Behauptungen aufgestellt.

Der Zähler $x$ geht für [mm] $x\to-\infty$ [/mm] eindeutig gegen [mm] $-\infty$, [/mm] was ja schon die "Bewegung" selbst aussagt.

[mm] $e^x$ [/mm] geht nachwievor gegen 0.



Grüße, Stefan.

Bezug
                        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Di 10.04.2007
Autor: Fry

Hallo,

also generell gilt: durch 0 teilen ist verboten !
Außerdem muss man bei solchen Grenzwertprozeßen sehr vorsichtig sein.
Denn es gilt z.B. NICHT immer:  [mm] \infty [/mm] * [mm] \infty [/mm] = [mm] \infty [/mm]  oder 0 * [mm] \infty [/mm] = 0.
Das hängt von der Funktion ab. In solchen Fällen helfen nur andere Betrachtungen.

z.B. könntest du folgendes machen:
Du könntest z.B. das x durch -x ersetzen und dafür den Grenzwert für [mm] +\infty [/mm] statt für - [mm] \infty [/mm] betrachten.

Also: [mm] \limes_{x\rightarrow- \infty} \bruch{x}{e^x} [/mm] = [mm] \limes_{x\rightarrow \infty} \bruch{-x}{e^-x} [/mm] = [mm] \limes_{x\rightarrow \infty} (-x)*e^x [/mm]

Jetzt könnte man das Steigungsverhalten des Graphen und die Nullstellen betrachten von f(x) = [mm] (-x)*e^x. [/mm]

f´(x) = [mm] (1+x)*(-e^x) [/mm]
Für positve x ist 1+x [mm] \le [/mm] 0 und -e^-x [mm] \ge [/mm] 0, also ist für x [mm] \le [/mm] 0 immer negativ.
D.h. der Graph fällt streng monoton.
Das wiederum bedeutet: entweder streben die Funktionswerte gegen [mm] -\infty [/mm] oder gegen 0.

Jetzt kommen die Nullstellen ins Spiel: f(x) hat eine Nullstelle bei x=0.
Da der Graph der Funktion aber fällt, kann er sich nicht der null nähern, dafür müsste er steigen, da die Funktionswere beim Überschreiten der Nullstelle negativ werden. Also kann der Grenzwert nur - [mm] \infty [/mm] sein.

Grüße
Fry


Bezug
        
Bezug
l'hospital?: Antwort
Status: (Antwort) fertig Status 
Datum: 19:23 Di 10.04.2007
Autor: HJKweseleit


> ich soll das verhalten bei +/- unendlich untersuchen
>  die fkt.lautet [mm]\bruch{x}{e^{x}}[/mm] laut lösung kann ich -
> [mm]\infty[/mm]
> ohne L'hospital lösen aber + [mm]\infty[/mm] nicht. kann mir jemand
> erklären warum dass so ist?

Du darfst in beiden Fällen L'Hospital anwenden, aber bei
- [mm]\infty[/mm] ist dies nicht nötig:
Der Zähler wird zu einer immer "größeren" negativen Zahl, geht nach - [mm]\infty[/mm]. Der Nenner ist immer positiv, wird aber immer kleiner. Das verstärkt die "Größe" des Wertes noch: Also geht das Ganze gegen - [mm]\infty[/mm].

Für + [mm]\infty[/mm] ist dies nicht direkt einsichtig: Zähler und Nenner gehen beide nach + [mm]\infty[/mm]. Ist der Quotient nun 1, 0 oder 4711? Nun wendest du L'Hospital an (nicht zu verwechseln mit der Quotientenregel!) und erhältst [mm] 1/e^{x}. [/mm] Nun geht für x nach + [mm]\infty[/mm] der Zähler gegen Null. Außerdem wird er durch eine immer größere Zahl geteilt. Also wird das Ganze erst recht 0.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]