matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationl'Hospital: Ableitung (II)
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - l'Hospital: Ableitung (II)
l'Hospital: Ableitung (II) < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

l'Hospital: Ableitung (II): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 So 23.03.2008
Autor: abi2007LK

Hallo,

ich habe ein Problem mit einer Aufgabe:

[mm] \limes_{x\rightarrow 0^{+}} \frac{(1+x^2)^{\frac{1}{3}}-(1+x sin x)}{e^{x^2}-1} [/mm]

Fein. Da kann ich ja in aller Ruhe l'Hospital anwenden und Zähler und Nenner getrennt ableiten.

Ich komme dann auf:

[mm] \limes_{x\rightarrow 0^{+}} \frac{\frac{2x}{3(1+x^2)^{\frac{2}{3}}} - (sin(x)+x*cos(x))}{2x*e^{x^2}} [/mm]

In der Musterlösung steht da aber:

[mm] \limes_{x\rightarrow 0^{+}} \frac{\frac{1}{3}(1+x^2)^{-2/3}}{e^{x^2}} [/mm]

Wie kommen die auf diese Ableitung?

Danke.

        
Bezug
l'Hospital: Ableitung (II): Antwort
Status: (Antwort) fertig Status 
Datum: 14:11 So 23.03.2008
Autor: abakus


> Hallo,
>  
> ich habe ein Problem mit einer Aufgabe:
>
> [mm]\limes_{x\rightarrow 0^{+}} \frac{(1+x^2)^{\frac{1}{3}}-(1+x sin x)}{e^{x^2}-1}[/mm]
>  
> Fein. Da kann ich ja in aller Ruhe l'Hospital anwenden und
> Zähler und Nenner getrennt ableiten.
>  
> Ich komme dann auf:
>
> [mm]\limes_{x\rightarrow 0^{+}} \frac{\frac{2x}{3(1+x^2)^{\frac{2}{3}}} - (sin(x)+x*cos(x))}{2x*e^{x^2}}[/mm]
>  
> In der Musterlösung steht da aber:
>
> [mm]\limes_{x\rightarrow 0^{+}} \frac{\frac{1}{3}(1+x^2)^{-2/3}}{e^{x^2}}[/mm]
>  
> Wie kommen die auf diese Ableitung?
>
> Danke.

Hallo,
es gilt folgende Beziehung:  [mm]\limes_{x\rightarrow 0} \frac{sin(x)}{x}=1[/mm].
In unmittelbarer Umgebung von 0 kann man also getrost sin(x) durch x ersetzen. Das vereinfacht hier wesentlich.

Ach so, das ist ja gar nicht nötig.  Dein Bestandteil  (sin(x)+x*cos(x)) des Zählers der Ableitung wird doch Null, wenn x gegen Null geht. Danach kürzt sich der Faktor 2x weg.

Gruß Abakus


Bezug
        
Bezug
l'Hospital: Ableitung (II): Antwort
Status: (Antwort) fertig Status 
Datum: 14:38 So 23.03.2008
Autor: Somebody


> Hallo,
>  
> ich habe ein Problem mit einer Aufgabe:
>
> [mm]\limes_{x\rightarrow 0^{+}} \frac{(1+x^2)^{\frac{1}{3}}-(1+x sin x)}{e^{x^2}-1}[/mm]

[mm] $=-\frac{2}{3}$ [/mm]

>  
> Fein. Da kann ich ja in aller Ruhe l'Hospital anwenden und
> Zähler und Nenner getrennt ableiten.
>  
> Ich komme dann auf:
>
> [mm]\limes_{x\rightarrow 0^{+}} \frac{\frac{2x}{3(1+x^2)^{\frac{2}{3}}} - (sin(x)+x*cos(x))}{2x*e^{x^2}}[/mm]

[ok] hat noch immer den Limes [mm] $-\frac{2}{3}$, [/mm] wie Ersetzen von [mm] $\sin(x)+x\cos(x)$ [/mm] durch die Näherung $2x+o(x)$ (für [mm] $x\rightarrow [/mm] 0$) zeigt.

> In der Musterlösung steht da aber:
>
> [mm]\limes_{x\rightarrow 0^{+}} \frac{\frac{1}{3}(1+x^2)^{-2/3}}{e^{x^2}}[/mm]

[notok] hat den Limes [mm] $\frac{1}{3}$ [/mm]



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]