matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungkurven eigenschaften
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - kurven eigenschaften
kurven eigenschaften < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kurven eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Mo 08.05.2006
Autor: da_genie

Aufgabe
ermitteln sie das absoloute Maximum der Funktion
f(x)= -0,5*(x-1,8)*(x+2,35)  

Ich habe jez ausgerechnet
f(x)= -0,5*(x-1,8)*(x+2,35)
=-0,5*(x²+2,35x-1,8x+0,55)
=-0.5*(x²+0,55x+0,55)
=-0,5x²-0,275x-0,275

hallo zwerglein könntest du mir das lösen denn ich komme immer auf die 0,55 in der klammer ? und das mit dem maximum habe ich leider nicht verstanden könntest du es mir vorrechnen? BITTE BITTE


        
Bezug
kurven eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mo 08.05.2006
Autor: hase-hh

moin denis,

das absolute maximum bzw. das globale maximum einer funktion ist der punkt, an dem die funktion ihren absolut-höchsten wert hat.

deine funktion ist ene nach unten geöffnete parabel (-0,5 [mm] x^2...), [/mm] d.h. das der absolut höchste wert der funktion in diesem fall mit dem lokalen maximum bzw. dem scheitelpunkt übereinstimmt.

f'(x)= -x - 0,275

f''(x)= -1

0= -x -0,275
x= -0,275  => HP (-0,275 / f(-0,275))

da die funktion für x gegen  [mm] \pm \infty [/mm]
gene -  [mm] \infty [/mm]  geht, ist hier das lokale maximum = dem globalen maximum.

gruss
wolfgang






Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]