matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenHochschulPhysikkonstante Zugspannung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "HochschulPhysik" - konstante Zugspannung
konstante Zugspannung < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konstante Zugspannung: Aufgabe/Ansätze
Status: (Frage) beantwortet Status 
Datum: 17:13 Do 20.03.2008
Autor: Chattanuga

Aufgabe
Ein vertikal angeordneter Stab sei am oberen Ende aufgehängt und am unteren Ende mit der Kraft F zusätzlich zu seinem Eigengewicht belastet. Das spezifische Gewicht des Stabes sei Gamma.
Wie muss der Querschnitt A des Stabes über seine Länge dimensioniert werden, damit in jedem Querschnitt die gleiche Zugspannung Sigma auftritt?

Ganz allgemein ist mir klar, dass, damit Sigma konstant bleibt, A nach oben hin immer größer werden muss, wahrscheinlich mit [mm] x^2 [/mm] Abhängigkeit von der Stablänge. Wenn ich jetzt aber die allgemeine Formel für die Spannung

sigma = (F+gamma*x*A)/A

benutze, kürzt sich beim Eigengewicht der Querschnitt heraus. Das kann natürlich nicht sein, weil ich sonst auf keine Lösung komme (und es irgendwie unlogisch ist). Ich denke, dass ich die Formel so nur nehmen kann, wenn A über die Länge des Stabes konstant bleibt, was ja hier nicht der Fall ist.
Und genau das ist mein Problem. Ich weiß nicht, wie ich den sich verändernden Querschnitt in meiner Rechnung berücksichtige.

Ich habe probiert, über die Randbedingungen etwas auszurichten, aber ohne für mich ersichtlichen Erfolg. Wenn ich einsetze, dass am unteren Ende des Stabes das Eigengewicht null ist und das mit dem Sigma an beliebiger stelle x gleichsetze, erhalte ich:

F/A0=F/A1+gamma*x

Aber jetzt weiß ich nicht wirklich weiter, hab ehrlich gesagt auch das Gefühl, dass ich einen kapitalen Denkfehler irgendwo habe.

Ich wäre sehr dankbar, wenn mir wer sagen könnte, inwieweit meine Überlegungen stimmen und wie ich die Veränderung von A in die Rechnung einbauen kann.

mfg Chattanuga

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
konstante Zugspannung: umstellen
Status: (Antwort) fertig Status 
Datum: 17:38 Do 20.03.2008
Autor: Loddar

Hallo Chattanuga,

[willkommenvh] !!


Dein Ansatz mit dieser Formel ist doch schon gut:

[mm] $$\sigma [/mm] \ = \ [mm] \bruch{F+\gamma*A(x)*x}{A(x)} [/mm] \ = \ [mm] \bruch{F}{A(x)}+\gamma*x [/mm] \ = \ [mm] \text{const.}$$ [/mm]
Und nun diese Gleichung nach $A(x) \ = \ ...$ umstellen.


Gruß
Loddar


Bezug
                
Bezug
konstante Zugspannung: leichte Zweifel :)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:51 Do 20.03.2008
Autor: Chattanuga

Danke für die herzliche Begrüßung im Forum und für die schnelle Hilfe.

Mir war die Lösung in der Form einfach zu banal, irgendwie find ich es eigenartig, dass sich das ganze ohne Integrieren lösen lässt. Wahrscheinlich eine Physikerkrankheit :)

lg Chattanuga

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]