komplexes Polynom vom Grad <=2 < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:26 Di 28.05.2013 | Autor: | clemenum |
Aufgabe | Man zeige:
Ist $p(z) [mm] \in \mathbb{C}[z] [/mm] $ ein nicht-konstantes Polynom vom Grad [mm] $\le [/mm] 2,$ so gilt [mm] $p(\mathbb{C})= \mathbb{C} [/mm] $ |
Sei $p(z)= [mm] a_2 z^2 [/mm] + a_1z + [mm] a_0 [/mm] $ mit [mm] $a_i \in \mathbb{C} \forall [/mm] i $
Meide Idee ist einfach die, dass ich für $z=a+bi$ setzte:
[mm] $a_2(a+bi)^2 [/mm] + [mm] a_1(a+bi) [/mm] + [mm] a_0= \ldots [/mm] = [mm] a_2 [/mm] ( [mm] a^2 -b^2) [/mm] + [mm] (a+a_0)a_1 [/mm] + (2a_2ab +a_1b)i$ mit [mm] $a_0,a_1,a_2 \in \mathbb{C}$ [/mm] fest und die restlichen Variablen durchlaufen den ganzen Bereich.
Nun muss ich noch argumentieren, warum sowohl Realteil als auch Imaginärteil bei wandernden $a,b$ ganz [mm] $\mathbb{R}$ [/mm] durchlaufen.
Kann mir jemand helfen beim Beweis dieser Tatsache?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:12 Di 28.05.2013 | Autor: | Marcel |
Hallo!
> Man zeige:
> Ist [mm]p(z) \in \mathbb{C}[z][/mm] ein nicht-konstantes Polynom vom
> Grad [mm]\le 2,[/mm] so gilt [mm]p(\mathbb{C})= \mathbb{C}[/mm]
> Sei [mm]p(z)= a_2 z^2 + a_1z + a_0[/mm]
> mit [mm]a_i \in \mathbb{C} \forall i[/mm]
>
> Meide Idee ist einfach die, dass ich für [mm]z=a+bi[/mm] setzte:
> [mm]a_2(a+bi)^2 + a_1(a+bi) + a_0= \ldots = a_2 ( a^2 -b^2) + \red{\;(a+a_0)a_1\;} + (2a_2ab +a_1b)i[/mm]
Ich erhalte
[mm] $$a_2(a+bi)^2 [/mm] + [mm] a_1(a+bi) [/mm] + [mm] a_0= \ldots [/mm] = [mm] a_2 [/mm] ( [mm] a^2 -b^2) [/mm] + [mm] aa_1+a_0 [/mm] + (2a_2ab +a_1b)i$$
> mit [mm]a_0,a_1,a_2 \in \mathbb{C}[/mm] fest und die restlichen
> Variablen durchlaufen den ganzen Bereich.
> Nun muss ich noch argumentieren, warum sowohl Realteil als
> auch Imaginärteil bei wandernden [mm]a,b[/mm] ganz [mm]\mathbb{R}[/mm]
> durchlaufen.
> Kann mir jemand helfen beim Beweis dieser Tatsache?
Ich sag's mal so: Wenn Du auch noch [mm] $a_2,a_1$ [/mm] und [mm] $a_0$ [/mm] zerlegst in
"Realteil+i*Imaginärteil", und wenn Du ein vorgegebenes $w [mm] \in \IC$ [/mm] ebenfalls
als [mm] $w=c+id\,$ [/mm] mit $c,d [mm] \in \IR$ [/mm] schreibst, so kannst Du zeigen, dass
$$p(z)=w$$
lösbar ist, indem Du die Real- und Imaginärteile beider Seiten vergleichst.
Es gilt doch: Eine komplexe Zahl ist genau dann Null, wenn sowohl der
Real- als auch der Imaginärteil (die reelle) Null ist. Daher sind zwei komplexe
Zahlen dann und nur dann gleich, wenn sowohl ihre Real- als auch ihre
Imaginärteile übereinstimmen!
Dann bekommst Du also ein (relles) GLS, für welches Du zu zeigen hast,
dass es in den Variablen $a,b [mm] \in \IR$ [/mm] lösbar ist.
P.S. Die Voraussetzung der Nichtkonstantheit des Polynoms musst Du natürlich
"noch irgendwo verbraten"!
Gruß,
Marcel
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:20 Di 28.05.2013 | Autor: | Marcel |
Hallo,
nur mal eine andere Idee:
[mm] $$p(z)=a_2z^2+a_1z+a_0$$
[/mm]
kannst Du für [mm] $a_2\not=0$ [/mm] umschreiben zu
[mm] $$p(z)=a_2\left(z+\frac{a_1}{2a_2}\right)^2-\frac{{a_1}^2}{4a_2}+a_0\,.$$
[/mm]
Daher kannst Du Dich im Falle [mm] $a_2 \not=0$ [/mm] darauf beschränken, $z [mm] \mapsto z^2$
[/mm]
zu untersuchen.
Bleibt noch der (fast triviale) Fall [mm] $a_2=0\,,$ [/mm] aber [mm] $a_1 \not=0$...
[/mm]
Gruß,
Marcel
|
|
|
|