matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysiskomplexer Logarithmus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - komplexer Logarithmus
komplexer Logarithmus < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexer Logarithmus: Korrektur
Status: (Frage) überfällig Status 
Datum: 21:36 Mo 11.06.2007
Autor: hopsie

Aufgabe
Sei [mm] ln_{\alpha} [/mm] der Zweig der Logarithmusfunktion zu [mm] \alpha \in \IR. [/mm] Berechne folgende Werte:
[mm] ln_{\pi}(1+\wurzel{3}i) [/mm] und [mm] ln_{2\pi}(\bruch{\wurzel{3}}{2}-\bruch{i}{2}) [/mm]

Hallo!

allgemein gilt: [mm] ln_{\alpha}(z)=ln|z|+i(\phi+2\alpha\pi) [/mm] für die geschlitzte Ebene { [mm] re^{i\phi}|r>0, \alpha-\pi<\phi<\alpha+\pi [/mm] }

Ich habe [mm] ln_{\pi}(1+\wurzel{3}i) [/mm] folgendermaßen gerechnet:
|z|=2
[mm] \phi [/mm] = [mm] arctan\bruch{\wurzel{3}}{1} \Rightarrow \phi [/mm] = [mm] \bruch{\pi}{3} [/mm]
Dann müsste doch folgen: [mm] ln_{\pi}(1+\wurzel{3}i) [/mm] = [mm] ln2+i(\bruch{\pi}{3}+2\pi^{2}) [/mm]
Ich habe aber im Internet die Lösung [mm] ln2+i\bruch{\pi}{3} [/mm] gefunden. Was hab ich falsch gemacht?

Ein ähnliches Problem bei dem zweiten:
|z|=1
[mm] \phi=arctan(-\bruch{2}{2}\wurzel{3}) \Rightarrow \phi=-\bruch{\pi}{3} [/mm]
Da [mm] =-\bruch{\pi}{3} [/mm] aber nicht in der geschlitzen Ebene ist, muss ich doch [mm] \phi [/mm] noch umrechnen, damit [mm] \phi\in(\pi,3\pi) [/mm] liegt. [mm] \Rightarrow \phi [/mm] = [mm] \bruch{5}{3}\pi [/mm] .
Stimmt die Umrechnung soweit?
Dann müsste [mm] ln_{2\pi}(\bruch{\wurzel{3}}{2}-\bruch{i}{2}) [/mm] = ln1 + [mm] i(\bruch{5}{3}\pi+2\*2\pi^{2}) [/mm] = [mm] i(\bruch{5}{3}\pi+2\*2\pi^{2}) [/mm] sein.
Allerdings hab ich wieder eine andere Lösung im Internet gefunden: [mm] \bruch{11\*\pi\*i}{6} [/mm]

Wär toll, wenn mir jemand sagen kann, ob ein Fehler in meiner Berechnung ist.
Danke schonmal im Voraus.
Gruß, hopsie



        
Bezug
komplexer Logarithmus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mi 13.06.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]