matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Reihe
komplexe Reihe < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Do 15.07.2010
Autor: mb83

Aufgabe
[mm] \summe_{r=1}^{m} e^{-in(r-1) \bruch{2\pi}{N}} =\bruch{e^{-in \bruch{2\pi}{N} m} -1}{e^{-in \bruch{2\pi}{N} } -1} [/mm]    mit n,m,N [mm] \in \IN [/mm]

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt: Habe in einem Paper gelesen das die oben dargestellte Summe wie folgt dargestellt werden kann! Meiner Meinung nach ist das NICHT richtig, siehe z.B. m=1

Hat jemand eine Idee was hier nicht stimmt????

        
Bezug
komplexe Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Do 15.07.2010
Autor: MathePower

Hallo mb83,

> [mm]\summe_{r=1}^{m} e^{-in(r-1) \bruch{2\pi}{N}} =\bruch{e^{-in \bruch{2\pi}{N} m} -1}{e^{-in \bruch{2\pi}{N} } -1}[/mm]
>    mit n,m,N [mm]\in \IN[/mm]
>  Ich habe diese Frage auch in
> folgenden Foren auf anderen Internetseiten gestellt: Habe
> in einem Paper gelesen das die oben dargestellte Summe wie
> folgt dargestellt werden kann! Meiner Meinung nach ist das
> NICHT richtig, siehe z.B. m=1
>  
> Hat jemand eine Idee was hier nicht stimmt????


Hier stimmt doch alles.

Poste doch, was hier Deiner Meinung nach nicht stimmen soll.


Gruss
MathePower

Bezug
        
Bezug
komplexe Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Do 15.07.2010
Autor: gfm


> [mm]\summe_{r=1}^{m} e^{-in(r-1) \bruch{2\pi}{N}} =\bruch{e^{-in \bruch{2\pi}{N} m} -1}{e^{-in \bruch{2\pi}{N} } -1}[/mm]
>    mit n,m,N [mm]\in \IN[/mm]
>  Ich habe diese Frage auch in
> folgenden Foren auf anderen Internetseiten gestellt: Habe
> in einem Paper gelesen das die oben dargestellte Summe wie
> folgt dargestellt werden kann! Meiner Meinung nach ist das
> NICHT richtig, siehe z.B. m=1
>  
> Hat jemand eine Idee was hier nicht stimmt????

[mm] \summe_{r=1}^{m} q^{r-1}=\frac{q^m-1}{q-1} [/mm] gilt auch im Komplexen. Alles also i.O. Was Dich verwirrte, war bestimmt der Umstand, dass für m=1 links nur [mm] q^0 [/mm] steht.

LG

gfm




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]