matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenkomplexe Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Folgen und Reihen" - komplexe Reihe
komplexe Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:15 Mo 26.10.2009
Autor: Roli772

Aufgabe
Sei [mm] \summe_{i=1}^{\infty} c_{n}, \summe_{i=1}^{\infty} d_{n} [/mm] konv. Reihen mit [mm] c_{n},d_{n} \in \IR, c_{n} \le d_{n} \forall [/mm] n.
[mm] \Rightarrow \summe_{i=1}^{\infty} c_{n} \le \summe_{i=1}^{\infty} d_{n} [/mm]

Hi an alle!
Habe leider noch keine richtige Erfahrung mit Reihen, vielleicht hätte hier jemand einen Ansatz für mich.
Könnte es sein, dass mir hier das Majorantenkriterium weiterhilft oder liege ich mit dieser Vermutung falsch?
Danke für eure Zeit!
Mfg Sr.

        
Bezug
komplexe Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:16 Mo 26.10.2009
Autor: Roli772

Habe gemerkt, der Titel ist natürlich irreführend, es handelt sich natürlich um eine reele Reihe, sry.
Mfg Sr

Bezug
        
Bezug
komplexe Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Mo 26.10.2009
Autor: fred97


> Sei [mm]\summe_{i=1}^{\infty} c_{n}, \summe_{i=1}^{\infty} d_{n}[/mm]
> konv. Reihen mit [mm]c_{n},d_{n} \in \IR, c_{n} \le d_{n} \forall[/mm]
> n.
>  [mm]\Rightarrow \summe_{i=1}^{\infty} c_{n} \le \summe_{i=1}^{\infty} d_{n}[/mm]
>  
> Hi an alle!
>  Habe leider noch keine richtige Erfahrung mit Reihen,
> vielleicht hätte hier jemand einen Ansatz für mich.
>  Könnte es sein, dass mir hier das Majorantenkriterium
> weiterhilft oder liege ich mit dieser Vermutung falsch?
>  Danke für eure Zeit!


Setze [mm] A_n [/mm] := [mm] \summe_{i=1}^{n} c_{i} [/mm] und [mm] B_n [/mm] =  [mm] \summe_{i=1}^{n} d_{i} [/mm]

Wegen    [mm] c_{i} \le d_{i} [/mm] für alle i, folgt [mm] A_n \le B_n [/mm] für alle n

hilft das ?

FRED

>  Mfg Sr.


Bezug
                
Bezug
komplexe Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:29 Mo 26.10.2009
Autor: Roli772

Hm.. nicht wirklich, denn genau das soll ich doch zeigen, oder?

Bezug
                        
Bezug
komplexe Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Mo 26.10.2009
Autor: fred97

Es ist doch

            $ [mm] \limes_{n\rightarrow\infty} A_n [/mm] $ = $ [mm] \summe_{i=1}^{\infty} c_{i} [/mm] $   !!!


FRED

Bezug
                                
Bezug
komplexe Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:43 Mo 26.10.2009
Autor: Roli772

Meinst du, weil die beiden Reihen konvergieren und jeweils [mm] a_{n} [/mm] kleiner als sämtliche [mm] b_{n} [/mm] ist, dass daraus folgt, dass auch der Reihenwert [mm] A_{n} [/mm] kleiner [mm] B_{n} [/mm] sein muss?
Sry, dass ich da ein bisschen auf der Leitung stehe.

Bezug
                                        
Bezug
komplexe Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:50 Mo 26.10.2009
Autor: fred97

Für Folgen gilt: Sind [mm] (A_n) [/mm] und [mm] (B_n) [/mm] konvergente Folgen und gilt [mm] A_n \le B_n [/mm] für jedes n, so gilt auch

               [mm] \limes_{n\rightarrow\infty}A_n \le \limes_{n\rightarrow\infty}B_n [/mm]

FRED

Bezug
                                                
Bezug
komplexe Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:54 Mo 26.10.2009
Autor: Roli772

Hm.. glaube den Satz haben wir in der VL nicht behandelt. Kann ihn vermutlich auch nicht hernehmen.

Bezug
                                                        
Bezug
komplexe Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Mo 26.10.2009
Autor: fred97

Den Satz hattet ihr sicher (schau noch mal nach !)

Ohne diesen Satz kannst Du Deine ursprüngliche Aufgabe nicht erledigen

FRED

Bezug
                                                                
Bezug
komplexe Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:31 Mo 26.10.2009
Autor: Roli772

Stimmt, hattest recht! Die Seite, wos draufstehen müsste, ist genau die, welche ich grad nicht mehr finde *gg*
Danke für deine Hilfe!!
lg Sr

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]