matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahlenkomplexe Gleichung lösen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Komplexe Zahlen" - komplexe Gleichung lösen
komplexe Gleichung lösen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexe Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:55 Do 01.09.2011
Autor: wesseler90

Aufgabe
Man bestimme alle Lösungen [mm]z \in \IC[/mm] der Gleichung

[mm]5e^{3jz} = 3 - 4j[/mm]

Moin,

also unser Lösungsansatz sieht wie folgt aus:

[mm]5e^{3jz} = 3 - 4j[/mm]

[mm]e^{3jz} = \bruch{3}{5} - \bruch{4j}{5}[/mm]

[mm]3jz = ln(\bruch{3}{5} - \bruch{4j}{5})[/mm]

[mm]z = \bruch{ln(\bruch{3}{5} - \bruch{4j}{5})}{3j}[/mm]

Wir wissen absolut nicht weiter bzw. ob das überhaupt der Lösung entspricht.

Ich hoffe, jemand ist in der Lage uns zu helfen.

Vielen Dank schon mal im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
komplexe Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:10 Do 01.09.2011
Autor: Al-Chwarizmi


> Man bestimme alle Lösungen [mm]z \in \IC[/mm] der Gleichung
>  
> [mm]5e^{3jz} = 3 - 4j[/mm]
>  Moin,
>  
> also unser Lösungsansatz sieht wie folgt aus:
>  
> [mm]5e^{3jz} = 3 - 4j[/mm]
>  
> [mm]e^{3jz} = \bruch{3}{5} - \bruch{4j}{5}[/mm]
>  
> [mm]3jz = ln(\bruch{3}{5} - \bruch{4j}{5})[/mm]
>  
> [mm]z = \bruch{ln(\bruch{3}{5} - \bruch{4j}{5})}{3j}[/mm]
>  
> Wir wissen absolut nicht weiter bzw. ob das überhaupt der
> Lösung entspricht.


Hallo wesseler90,

im Prinzip ist dies richtig - aber doch nicht der optimale
Lösungsweg.
Tipp:  Schreibe [mm] e^{3\,j\,z} [/mm] als   $\ [mm] cos(3\,z)+j*sin(3\,z)$ [/mm]  !
Vergleiche dann Real- und Imaginärteile.

LG   Al-Chw.



Bezug
                
Bezug
komplexe Gleichung lösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Do 01.09.2011
Autor: wesseler90

Hallo und vielen Dank für deine Antwort, jedoch stehen wir auf dem Schlauch, was du mit dem Vergleich der Real- bzw. Imaginärteile meinst.

Also:

[mm]cos(3z) + jsin(3z) = \bruch{3}{5} - \bruch{4j}{5}[/mm]

ist unsere Ausgangsformel und dann hätten wir jetzt einfach die beiden Real- und Imaginärteile gleichgesetzt, also:

[mm]cos(3z) = \bruch{3}{5}[/mm]

und

[mm]sin(3z) = -\bruch{4}{5}[/mm]

Oder wie war das gemeint? Wir sind echt ein wenig ratlos... leider.


Bezug
                        
Bezug
komplexe Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:02 Do 01.09.2011
Autor: MathePower

Hallo wesseler90,

> Hallo und vielen Dank für deine Antwort, jedoch stehen wir
> auf dem Schlauch, was du mit dem Vergleich der Real- bzw.
> Imaginärteile meinst.
>  
> Also:
>  
> [mm]cos(3z) + jsin(3z) = \bruch{3}{5} - \bruch{4j}{5}[/mm]
>  
> ist unsere Ausgangsformel und dann hätten wir jetzt
> einfach die beiden Real- und Imaginärteile gleichgesetzt,
> also:
>  
> [mm]cos(3z) = \bruch{3}{5}[/mm]
>  
> und
>  
> [mm]sin(3z) = -\bruch{4}{5}[/mm]
>  
> Oder wie war das gemeint? Wir sind echt ein wenig ratlos...
> leider.
>  


Es steht doch zunächst da:

[mm]e^{3jz}=3-4j[/mm]

Da [mm]z\in \IC[/mm] setzen wir [mm]z=a+b*j[/mm]

Dann steht da:

[mm]e^{3j\left(a+bj\right)}=3-4j[/mm]

Den linken Teil der Gleichung müsst ihr zunächst auf die Form

[mm]c+di[/mm]

bringen.

Dann könnnen Real- und Imaginärteil der Gleichung verglichen werden.


Gruss
MathePower

Bezug
                        
Bezug
komplexe Gleichung lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Do 01.09.2011
Autor: Al-Chwarizmi


> Hallo und vielen Dank für deine Antwort, jedoch stehen wir
> auf dem Schlauch, was du mit dem Vergleich der Real- bzw.
> Imaginärteile meinst.
>  
> Also:
>  
> [mm]cos(3z) + jsin(3z) = \bruch{3}{5} - \bruch{4j}{5}[/mm]
>  
> ist unsere Ausgangsformel und dann hätten wir jetzt
> einfach die beiden Real- und Imaginärteile gleichgesetzt,
> also:
>  
> [mm]cos(3\,z) = \bruch{3}{5}[/mm]
>  
> und
>  
> [mm]sin(3\,z) = -\bruch{4}{5}[/mm]
>  
> Oder wie war das gemeint?


Ja, genau so habe ich das gemeint. Es ist nun (glücklicher-
weise) so, dass diese Zahlenwerte wunderbar als Cosinus-
und Sinuswert eines Winkels (siehe das pythagoräische
3-4-5- Dreieck !) passen.
Man kann schließen, dass $\ [mm] 3\,z\ [/mm] =\ [mm] arcsin(-\bruch{4}{5})+k*2\pi$ [/mm] ist
(mit [mm] k\in\IZ) [/mm]

LG   Al-Chw.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]