komplexe Fourierreihe < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:58 Mi 01.02.2006 | Autor: | pippo |
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Gegeben ist folgende Potenzreihe:
[mm] \summe_{n=0}^{\infty}\bruch{(3n+4)(z+j)^n}{2^n}
[/mm]
Nun hab ich den Radius ausgerechnet und muss 2 Punkte überprüfen, die sich auf der Kreislinie befinden (+/- Wurzel aus 3)
Setze ich nun z.B. +Wurzel3 ein, erhalte ich:
[mm] \summe_{n=0}^{\infty}\bruch{(3n+4)(\wurzel{3}+j)^n}{2^n}
[/mm]
Mit Hilfe des Quotienten- und Wurzelkriteriums lassen sich keine aussagen treffen, da das Ergebnis jeweils 1 ist. Eine alternierende Reihe ist es ja auch nicht, somit fällt Leibniz flach. Wie prüf ich das nun?
|
|
|
|
Für die Partialsummen der Reihe kann man einen geschlossenen Ausdruck angeben. Man verwendet dafür die Formel der Abelschen partiellen Summation (ein diskretes Analogon zur partiellen Integration):
[mm]\sum_{\nu = 0}^n~a_{\nu} b_{\nu} \ = \ A_n b_{n+1} \ + \ \sum_{\nu=0}^n~A_{\nu} \left( b_{\nu} - b_{\nu+1} \right) \ \ \text{mit} \ \ A_n = \sum_{\nu=0}^n~a_{\nu}[/mm]
Mit [mm]a_n = z^n \, , \ b_n = 3n+4[/mm] folgt: [mm]A_n = \sum_{\nu = 0}^n~z^{\nu} = \frac{1 - z^{n+1}}{1 - z}[/mm], also
[mm]\sum_{\nu = 0}^n~(3 \nu + 4) \, z^{\nu} \ = \ \frac{1 - z^{n+1}}{1 - z} \, (3n+7) + \sum_{\nu = 0}^n~\frac{1 - z^{\nu + 1}}{1-z} \, (3 \nu + 4 - 3 \nu - 7)[/mm]
[mm]= \frac{1}{1 - z} \left( (3n+7) \left( 1 - z^{n+1} \right) - 3(n+1) + 3 \left( \frac{1 - z^{n+2}}{1 - z} - 1 \right) \right) = \ldots[/mm]
[mm]= \frac{1}{(1 - z)^2} \left( 4 - z + \left( (3n+4) \, z - (3n + 7) \right) \, z^{n+1} \right)[/mm]
Jetzt ist [mm]\omega = \frac{\sqrt{3}}{2} + \frac{\operatorname{i}}{2}[/mm] eine zwölfte Einheitswurzel, so daß gilt:
[mm]\sum_{\nu = 0}^n~(3 \nu + 4) \, \omega^{\nu} \ = \ \frac{3(n+1)}{\omega - 1} \ = \ - \frac{3(n+1)}{2} \left( 1 + (2 + \sqrt{3}) \operatorname{i} \right) \ \ \mbox{für} \ \ n \equiv -1 \ \mod \ 12[/mm]
Und dieser Ausdruck ist offenbar unbeschränkt für [mm]n \to \infty[/mm].
|
|
|
|