matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenkompaktheit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - kompaktheit
kompaktheit < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompaktheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Mi 14.10.2009
Autor: Bodo0686

Aufgabe
Es sei O(n) die Menge der orthogonalen (reellen) Matrizen, die wir als Teilmenge des (euklidischen) metrischen Raumes [mm] \IR^{n^2} [/mm] auffassen. Man zeige, dass O(n) kompakt ist.

Hallo,

könnt ihr mir bitte behilflich sein?!
Mir fehlt leider jegliche Idee....

Danke und Grüße

        
Bezug
kompaktheit: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mi 14.10.2009
Autor: rainerS

Hallo!

> Es sei O(n) die Menge der orthogonalen (reellen) Matrizen,
> die wir als Teilmenge des (euklidischen) metrischen Raumes
> [mm]\IR^{n^2}[/mm] auffassen. Man zeige, dass O(n) kompakt ist.
>  Hallo,
>  
> könnt ihr mir bitte behilflich sein?!
> Mir fehlt leider jegliche Idee....

Im [mm] $\IR^{n^2}$ [/mm] ist kompakt identisch mit "abgeschlossen und beschränkt". Alternativ könntest du zeigen, dass jede Folge in $O(n)$ eine konvergente Teilfolge mit Grenzwert in $O(n)$ besitzt.

Viele Grüße
  Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]