matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysiskompakter Träger
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Funktionalanalysis" - kompakter Träger
kompakter Träger < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kompakter Träger: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:41 Do 29.03.2007
Autor: dena

Aufgabe
Sei
[mm] K(\IR) [/mm] = { [mm] f:\IR \to \IK: [/mm] f stetig, supp(f) := [mm] \overline{\{ t: f(t)\not= 0 }\} [/mm] kompakt }
der Vektorraum aller stetigen Funktionen mit kompaktem Träger. Dann ist [mm] K(\IR) [/mm] dicht in [mm] L^{p}(\IR) [/mm] für 1 [mm] \le [/mm] p < [mm] \infty [/mm]

Hallo Leute!

Habe zu dieser Aufgabe einen Lösungsvorschlag:

Ich verwende (nach Dirk Werner), dass C[a,b] [mm] \subseteq L^{p}[a,b] [/mm] dicht für a,b [mm] \in \IR, [/mm] a < b. Sei [mm] \varepsilon [/mm] > 0.
Ist f [mm] \in L^{p}[\IR], [/mm] so gibt es ein R > 0 mit
[mm] \integral_{\IR \setminus [-R,R] }{|f |^{p}d\lambda} [/mm] < [mm] \bruch{\varepsilon^{p}}{3^{p}} [/mm]
Zu [mm] f|_{ [-R,R]} [/mm] gibt es ein g* [mm] \in [/mm] C[-R,R] mit [mm] \parallel [/mm] f-g* [mm] \parallel _{L^{p}[-R,R]} [/mm] < [mm] \bruch{\varepsilon}{3}. [/mm]
Wir betrachten die Abbildungen [mm] h_{n}: [/mm] [-R,R] [mm] \to \IR, [/mm] t [mm] \mapsto [/mm] min(n(R-|t|),1).
Damit : [mm] |h_{n} [/mm] g*|  [mm] \le [/mm] | g*| und [mm] h_{n} [/mm] g* [mm] \mapsto [/mm] g* auf ]-R, R[ für n [mm] \mapsto \infty. [/mm]
Wegen Satz von Lebesque: [mm] \limes_{n\rightarrow\infty} \parallel h_{n} [/mm] g*- g* [mm] \parallel _{L^{p}[-R,R]} [/mm] = 0,
also: [mm] \exists [/mm] n [mm] \in \IN [/mm] mit [mm] \parallel h_{n} [/mm] g*- g* [mm] \parallel _{L^{p}[-R,R]} [/mm] < [mm] \bruch{\varepsilon}{3}. [/mm]
Sei nun g: [mm] \IR \to \IR [/mm] durch [mm] g|_{[-R,R]} [/mm] = [mm] h_{n} [/mm] g* und g(t) = 0 sonst definert.
Dann: g [mm] \in K(\IR) [/mm] mit supp(g) [mm] \subseteq [/mm] [-R, R] und
[mm] \parallel [/mm] f - g [mm] \parallel_{p} \le (\integral_{\IR \setminus [-R,R] }{|f - g |^{p}d\lambda})^\bruch{1}{p} [/mm] + [mm] \parallel [/mm] f - g* [mm] \parallel _{L^{p}[-R,R]} [/mm] + [mm] \parallel [/mm] g* - g [mm] \parallel _{L^{p}[-R,R]} [/mm] < [mm] \varepsilon [/mm]

Passt das so oder hab ich etwas übersehen?

Vielen lieben Dank!

kalinka

        
Bezug
kompakter Träger: Antwort
Status: (Antwort) fertig Status 
Datum: 16:03 Do 29.03.2007
Autor: banachella

Hallo kalinka,

fuer mich sieht das ganz gut aus. Nach meinem Geschmack solltest du allerdings noch begruenden, warum $g$ stetig ist. Das ist bei genauerem hinsehen zwar klar, aber trotzdem.

Gruss, banachella

Bezug
                
Bezug
kompakter Träger: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Do 29.03.2007
Autor: dena

Hallo banachella!

Vielen Dank, werd ich machen!

lg

kalinka

Bezug
                        
Bezug
kompakter Träger: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:18 Mi 09.05.2007
Autor: dena

hallo!

habe schwierigkeiten zu zeigen, dass g stetig ist.. kann mir jemand helfen?

danke!
dena

Bezug
                                
Bezug
kompakter Träger: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:32 Mi 09.05.2007
Autor: dena

Meine Idee:


g* ist ja aus C[-R,R] (= Raum der stetigen Funktionen) und [mm] h_{n} [/mm] ist eine Konstante, somit ist g stetig!

ist meine Argumentation richtig?

Danke


Bezug
                                        
Bezug
kompakter Träger: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:20 Sa 12.05.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]