kommutativer Ring < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei M eine Menge und bezeichne mit [mm] \mathcal{P}(M) [/mm] ihr Potenzmenge. Für X,Y [mm] \in \mathcal{P}(M) [/mm] ist die symmetrische Differenz definiert durch X [mm] \Delta [/mm] Y= (X [mm] \cup [/mm] Y) \ (X [mm] \cap [/mm] Y). Zeigen Sie, dass ( [mm] \mathcal{P}(M), \Delta, \cap [/mm] ) ein kommutativer Ring ist. |
Ich habe mich versucht mit dieser Aufgabe auseinanderzusetzen, komme jedoch leider auf keinen grünen Zweig! Hoffe mir kann jemand helfen!!! viele grüße der mathedepp
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:11 So 26.11.2006 | Autor: | felixf |
Hallo mathedepp!
> Sei M eine Menge und bezeichne mit [mm]\mathcal{P}(M)[/mm] ihr
> Potenzmenge. Für X,Y [mm]\in \mathcal{P}(M)[/mm] ist die
> symmetrische Differenz definiert durch X [mm]\Delta[/mm] Y= (X [mm]\cup[/mm]
> Y) \ (X [mm]\cap[/mm] Y). Zeigen Sie, dass ( [mm]\mathcal{P}(M), \Delta, \cap[/mm]
> ) ein kommutativer Ring ist.
> Ich habe mich versucht mit dieser Aufgabe
> auseinanderzusetzen, komme jedoch leider auf keinen grünen
> Zweig! Hoffe mir kann jemand helfen!!!
Du musst hier die Ringaxiome nachrechnen. Fang doch erstmal an, diese herauszusuchen und ueberlege dir, was genau du nachrechnen musst. Du musst etwa zeigen, dass $A [mm] \delta [/mm] B = B [mm] \delta [/mm] A$ fuer alle $A, B [mm] \in \mathcal{P}(M)$ [/mm] gilt. Nimm dir also zwei Elemente $A, B [mm] \in \mathcal{P}(M)$, [/mm] also Teilmengen $A, B [mm] \subseteq [/mm] M$. Nun ist $A [mm] \delta [/mm] B = (A [mm] \cup [/mm] B) [mm] \setminus [/mm] (A [mm] \cap [/mm] B) = (B [mm] \cup [/mm] A) [mm] \setminus [/mm] (B [mm] \cap [/mm] A) = B [mm] \delta [/mm] A$, da [mm] $\cup$ [/mm] und [mm] $\cap$ [/mm] kommutativ sind. Ok soweit? Bei den anderen Axiomen geht's aehnlich...
LG Felix
|
|
|
|
|
Ich habe (praktischerweise) die gleiche Aufgabenstellung, und habe mich bis zu Assoziativität von Schnittmengen durchgekämpft. Jetzt stehe ich aber vor einer Wand. Mir ist sehrwohl klar, dass Schittmengen Assoziativ sind. die Frage ist nur: Wie kann ich das in eine schöne Beweis-Form bringen? Also, wie soll ich das beweisen? Oder, ist dies so simpel, das hier kein Beweis erforderlich ist?
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:32 Mi 29.11.2006 | Autor: | felixf |
Hallo!
> Ich habe (praktischerweise) die gleiche Aufgabenstellung,
> und habe mich bis zu Assoziativität von Schnittmengen
> durchgekämpft. Jetzt stehe ich aber vor einer Wand. Mir ist
> sehrwohl klar, dass Schittmengen Assoziativ sind. die Frage
> ist nur: Wie kann ich das in eine schöne Beweis-Form
> bringen? Also, wie soll ich das beweisen? Oder, ist dies so
> simpel, das hier kein Beweis erforderlich ist?
Das haengt von ganz von der Vorlesung und deinem Tutor ab
Du kannst es etwa so machen: $(A [mm] \cap [/mm] B) [mm] \cap [/mm] C = [mm] \{ x \mid x \in A \cap B \wedge x \in C \} [/mm] = [mm] \{ x \mid (x \in A \wedge x \in B) \wedge x \in C \} [/mm] = ...$.
LG Felix
|
|
|
|