matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikkombination
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Kombinatorik" - kombination
kombination < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

kombination: rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:19 Mo 28.08.2006
Autor: stefy

Aufgabe
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

ich hab ne frage und zwar bei der kombination mit wiederholung haben wir die formel


[mm] \IC_{W}{n}^{(k)}=\vektor{n + k - 1 \\ k}=\vektor{n + k \\ k + 1 } [/mm]

damit kriegen wir ja die anzahl der kombinationen heraus mit wiederholung aber was heisst eigentlich mit wiederholung genau ??

also die vorüberlegung :

[mm] \summe_{i=1}^{n}\vektor{k + i - 1 \\ k}=\vektor{ n + k \\ k + 1 } [/mm]

und mit der induktion hat man n = 1 für feste aber beliebige k  bewiesen und danach

für n [mm] \mapsto [/mm] n + 1  

also meine frage

[mm] \summe_{i=1}^{n + 1}\vektor{k + i - 1 \\ k}= [/mm]

[mm] \summe_{i=1}^{n}\vektor{k + i - 1 \\ k} [/mm] + [mm] \vektor{k + n \\ k} [/mm]

ich verstehe nicht wie die das so gespalten werden kann???????

danke für euere hilfe ich bin total verzweilfelt eure steffy gruss an alle

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

danach kommt der beweiss durch vollständige induktion über k bei beliebigem aber festem n:

wie beweist man das nun für k?????????  und k + 1 ??????

        
Bezug
kombination: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mo 28.08.2006
Autor: DirkG


> ich hab ne frage und zwar bei der kombination mit
> wiederholung haben wir die formel
>
>
> [mm]\IC_{W}{n}^{(k)}=\vektor{n + k - 1 \\ k}=\vektor{n + k \\ k + 1 }[/mm]

So kann man das nicht schreiben, das ist falsch. Vielleicht meinst du

[mm]\IC_{W,n}^{(k)} = \binom{n + k - 1}{k},\qquad \IC_{W,n}^{(k+1)} = \binom{n + k}{k+1}[/mm]

Kombinationen mit Wiederholung von $k$ aus $n$ bedeutet halt, dass man $k$-mal aus einer Menge von $n$ verschiedenen Elementen auswählt mit Zurücklegen nach jeder einzelnen Auswahl. Oder anders interpretiert: Elemente dürfen mehrfach ausgewählt werden.


Bezug
                
Bezug
kombination: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:28 Mo 28.08.2006
Autor: stefy

kannst du mir vllt zeigen wie ich für k + 1 beweise das scheint sehr schwierig zu sein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]