matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisisometrischer Isomorphismus
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Funktionalanalysis" - isometrischer Isomorphismus
isometrischer Isomorphismus < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

isometrischer Isomorphismus: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:23 Di 21.04.2009
Autor: Riley

Hallo,
wie kann man zeigen, dass durch
T: [mm] l_1 \rightarrow c_0' [/mm] mit (Tx)y := [mm] \sum_{j=1}^{\infty} x_j y_j [/mm] ein isometrischer Isomorphismus gegeben ist?

Rein theoretisch müsste ich wohl zeigen, dass T bijektiv ist und [mm] T^{-1} [/mm] stetig ist, dann haben wir einen Isomorphismus.
Damit er auch längenerhaltend ist, muss [mm] \|Tx\| [/mm] = [mm] \|x\| [/mm] gelten.
Gibt es hier einige Tricks um das abzukürzen, oder wie kann man das am besten machen?

Achja, [mm] c_0 [/mm] ist definiert als [mm] c_0:= \{x=(x_j)_{j \in N}: \lim_{j \rightarrow \infty} x_j = 0 \} [/mm]

und [mm] l_1 [/mm] := [mm] {x=(x_j)_{j \in N}: \sum_{j=1}^{\infty} |x_j|^p < \infty}. [/mm]


Viele Grüße,
Riley

        
Bezug
isometrischer Isomorphismus: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Do 23.04.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
isometrischer Isomorphismus: Idee
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Fr 08.05.2009
Autor: generation...x

Etwas spät, aber vielleicht gibt es ja noch Interesse an der Antwort:

Die Isometrie sollte nicht zu schwer zu zeigen sein - was ist die Norm auf den Banachräumen? Dann nachrechnen.

Ist T isometrisch, dann auch injektiv (und die Stetigkeit hat man damit auch erledigt). Jetzt kommt der Satz von der offenen Abbildung: T ist surjektiv genau dann, wenn T offen ist.  Also Offenheit nachweisen und das war's schon.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]