irreduzibilität zeigen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | zeigen Sie dass folg. pol. irreduzibel über [mm] \IQ[X] [/mm] ist:
[mm] X^{4}+2X^{3}+X^{2}+2X+1 [/mm] |
hab mir zuerst reduktion mod 2 überlegt, aber da bekomm ich leider raus dass sich das polynom mod 2 schreiben lässt als [mm] (X^{2}+X+1)^{2}, [/mm] also schlecht. damit ist aber wohl nicht gezeigt, dass f reduzibel ist, sondern nur über [mm] \IF_{2}. [/mm] Also muss etwas anderes her:( red. mod 3 würde das polynom nicht verändern, aber da gäbe es schon ein paar mehr irreduzible pol. vom grad 2, die es per polynomdiv. zu überprüfen gelte, was aber glaub ich viel zu aufwendig ist, denke es müsste noch eionen anderen trick geben. kann jemand helfen?
|
|
|
|
Hallo sepp-sepp,
bei Reduktion [mm] \mod{5} [/mm] bekommst Du ein Polynom ohne Nullstelle. Es kann also höchstens noch in zwei quadratische Faktoren zerfallen.
Ein allgemeiner Ansatz [mm] (X^2+aX+b)(X^2+cX+d) [/mm] ist dann aber nicht lösbar, wie sich zwar schnell ergibt, aber irgendwie nicht elegant zu zeigen ist, soweit ich sehe.
Grüße
reverend
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:06 Mi 08.12.2010 | Autor: | felixf |
Moin!
> zeigen Sie dass folg. pol. irreduzibel über [mm]\IQ[X][/mm] ist:
> [mm]X^{4}+2X^{3}+X^{2}+2X+1[/mm]
> hab mir zuerst reduktion mod 2 überlegt, aber da bekomm
> ich leider raus dass sich das polynom mod 2 schreiben
> lässt als [mm](X^{2}+X+1)^{2},[/mm] also schlecht. damit ist aber
> wohl nicht gezeigt, dass f reduzibel ist, sondern nur über
> [mm]\IF_{2}.[/mm] Also muss etwas anderes her:( red. mod 3 würde
> das polynom nicht verändern, aber da gäbe es schon ein
> paar mehr irreduzible pol. vom grad 2, die es per
> polynomdiv. zu überprüfen gelte, was aber glaub ich viel
> zu aufwendig ist, denke es müsste noch eionen anderen
> trick geben. kann jemand helfen?
Aus der Zerlegung modulo 2 siehst du schon, dass es keine Linearfaktoren geben kann (egal bzgl. welcher Primzahl du dir das anschaust). Du musst also hoechstens quadratische Faktoren ueberpruefen.
Sowohl modulo 3 wie auch modulo 5 ist das Polynom irreduzibel.
In [mm] $\IZ/3\IZ[x]$ [/mm] gibt es folgende Polynome von Grad 2, die irreduzibel sind:
* [mm] $x^2 [/mm] + 1$
* [mm] $x^2 [/mm] + x + 2$
* [mm] $x^2 [/mm] + 2 x + 1$
Das sind gerade mal drei, durch die du das Polynom mit Rest teilen musst. So viel Aufwand ist das nicht.
Alternativ kannst du den ggT vom Polynom modulo 3 mit [mm] $X^{3^2} [/mm] - X$ bestimmen. Dieser ist 1. Daraus folgt, dass das Polynom weder Nullstellen noch irreduzible Teiler von Grad 2 hat.
LG Felix
|
|
|
|