matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesinverses Polynom berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - inverses Polynom berechnen
inverses Polynom berechnen < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inverses Polynom berechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:55 So 23.11.2008
Autor: uecki

Hallo,

ich bräuchte mal den Lösungsweg oder einen Ansatz dafür, wie ich folgendes Polynom invertiere: [mm] x^3+x^2+1 [/mm]
Als Lösung habe ich hier: [mm] x^2 [/mm]
Weiß aber wirklich absolut nicht wie man darauf kommt.

Danke schon mal im voraus :-)

lg

        
Bezug
inverses Polynom berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 So 23.11.2008
Autor: leduart

Hallo
die Loesung ist keine.
Ausserdem glaub ich nicht, dass du das Ding invertieren kannst. ist zwar machbar aber irre arbeitsintensiv,
also sag uns die gestellte aufgabe. Wahrscheinlich heisst sie : zeige dass.. invertierbar ist.
dann sieh mal in der vorlesungsmitschrift nach, was ihr dazu gemacht habt. dass es moeglich ist heisst nicht, dass man ne explizite Umkehrformel angeben kann (oder soll)
Gruss leduart

Bezug
                
Bezug
inverses Polynom berechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:33 So 23.11.2008
Autor: uecki

Aufgabe
Wir befinden uns in Galois-Feld 16 und haben eine dualcodierte Matrix gegeben:

X^(1) = [mm] \pmat{ 1101 & 0111 \\ 0111 & 0110 \\ 0101 & 1101 \\ 1011 & 1101 } [/mm]

Man interpretiert jedes Bit in einer Matrixkomponente als Koeffizient eines Polynoms p vom Höchstgrad 3 über [mm] Z_{2} [/mm] in GF(16) und ersetzt es durch die entsprechenden Komponenten des inversen Polynoms p^-1 = q in GF(16) im Sinne von

[mm] (p_{3}x^3 [/mm] + [mm] p_{2}x^2 [/mm] + [mm] p_{1}x [/mm] + [mm] p_{0}) \odot (q_{3}x^3 [/mm] + [mm] q_{2}x^2 [/mm] + [mm] q_{1}x [/mm] + [mm] q_{0}) [/mm] = 1

bzw. in 4-Bit-Dualdarstellung

[mm] p_{3} [/mm] + [mm] p_{2} [/mm] + [mm] p_{1} [/mm] + [mm] p_{0} \odot q_{3} [/mm] + [mm] q_{2} [/mm] + [mm] q_{1} [/mm] + [mm] q_{0} [/mm] = 0001

So erhält man

X^(2) = [mm] \pmat{ 0100 & 0110 \\ 0110 & 0111 \\ 1011 & 0100 \\ 0101 & 0100 } [/mm]

Die Schritte von X^(1) zu X^(2) verstehe ich nicht. Ich komme einfach nicht auf die invertierte Matrix.

lg

Bezug
                        
Bezug
inverses Polynom berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:58 Di 25.11.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]