matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrainvariante Teilräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - invariante Teilräume
invariante Teilräume < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

invariante Teilräume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:03 Sa 03.06.2006
Autor: teletubbi

Aufgabe
Seien K ein Körper, V ein K- Vekorraum, d [mm] \in [/mm] K,  [mm] \lambda, \mu \in End_K [/mm] V und  [mm] \partial:= \lambda \mu [/mm] - [mm] \mu\lamda. [/mm]
Man zeige : genau dann ist [mm] V_d(\lambda) \mu [/mm] invariant, wenn [mm] V_d(\lambda) \subseteq [/mm] Kern [mm] \partial [/mm] gilt.
Welche Konsequenz ergibt sich daraus, wenn [mm] \lambda [/mm] und [mm] \mu [/mm] in einer kommutativen Teilalgebra von [mm] End_K [/mm] V enthalten sind?

Hallo,
leider habe ich mal wieder ein Problem. Ich komme bei der Aufgabe nicht weiter. D. h. eigentlich weiß ich nicht einmal wie ich anfangen soll.
Kann mir jemand trotz Pfingsten helfen?
Ich hoffe doch sehr.
Viele Grüße
teletubbi

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
invariante Teilräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:55 So 04.06.2006
Autor: felixf

Hallo!

> Seien K ein Körper, V ein K- Vekorraum, d [mm]\in[/mm] K,  [mm]\lambda, \mu \in End_K[/mm]
> V und  [mm]\partial:= \lambda \mu[/mm] - [mm]\mu\lamda.[/mm]
>  Man zeige : genau dann ist [mm]V_d(\lambda) \mu[/mm] invariant,
> wenn [mm]V_d(\lambda) \subseteq[/mm] Kern [mm]\partial[/mm] gilt.
>  Welche Konsequenz ergibt sich daraus, wenn [mm]\lambda[/mm] und [mm]\mu[/mm]
> in einer kommutativen Teilalgebra von [mm]End_K[/mm] V enthalten
> sind?

Was genau ist denn [mm] $V_d(\lambda)$? [/mm]

>  leider habe ich mal wieder ein Problem. Ich komme bei der
> Aufgabe nicht weiter. D. h. eigentlich weiß ich nicht
> einmal wie ich anfangen soll.

Fang doch erstmal mit [mm] ``$V_d(\lambda)$ $\mu$-invariant $\Rightarrow$ $V_d(\lambda \subseteq \ker \partial)$'' [/mm] an. Was bedeutet es, dass [mm] $V_d(\lambda)$ $\mu$-invariant [/mm] ist? Und was bedeutet es, dass [mm] $V_d(\lambda \subseteq \ker \partial)$ [/mm] ist?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]