matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungintegration lnx/x
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Integralrechnung" - integration lnx/x
integration lnx/x < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

integration lnx/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 23.02.2009
Autor: ljoker

hallo!
irgendwie scheitere ich noch an der integration von lnx/x. meine überlegungen bisher:
[mm] \integral_{a}^{b}{\bruch{lnx}{x}dx} [/mm] habe ich zunächst umgeformt in
[mm] \integral_{a}^{b}{lnx*\bruch{1}{x}dx}, [/mm] damit ich dann die produktregel anwenden kann.
dazu habe ich v´(x)= [mm] \bruch{1}{x}, [/mm] v(x)= lnx, u(x)= lnx und u´(x)= [mm] \bruch{1}{x} [/mm] gewählt.

das alles habe ich dann eingesetzt in
[mm] \integral_{a}^{b}{u*v(strich)dx} [/mm] = u*v - [mm] \integral_{a}^{b}{u(strich)*v dx} [/mm]
sodass ich das als ergebnis erhielt:

[mm] \integral_{a}^{b}{lnx*\bruch{1}{x}dx}= [/mm] lnx* [mm] \bruch{1}{x} [/mm] - [mm] \integral_{a}^{b}{\bruch{1}{x}*lnx dx} [/mm]

aber das hat mir ja dann im prinzip gar nichts gebracht. habe ich ein falsches verfahren gewählt oder muss ich die terme noch weiter umformen?
wäre froh wenn mir jemand weiterhelfen kann :)


        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Mo 23.02.2009
Autor: fred97


> hallo!
>  irgendwie scheitere ich noch an der integration von lnx/x.
> meine überlegungen bisher:
>  [mm]\integral_{a}^{b}{\bruch{lnx}{x}dx}[/mm] habe ich zunächst
> umgeformt in
> [mm]\integral_{a}^{b}{lnx*\bruch{1}{x}dx},[/mm] damit ich dann die
> produktregel anwenden kann.
>  dazu habe ich v´(x)= [mm]\bruch{1}{x},[/mm] v(x)= lnx, u(x)= lnx
> und u´(x)= [mm]\bruch{1}{x}[/mm] gewählt.
>  
> das alles habe ich dann eingesetzt in
> [mm]\integral_{a}^{b}{u*v(strich)dx}[/mm] = u*v -
> [mm]\integral_{a}^{b}{u(strich)*v dx}[/mm]
>  sodass ich das als
> ergebnis erhielt:
>  
> [mm]\integral_{a}^{b}{lnx*\bruch{1}{x}dx}=[/mm] lnx* [mm]\bruch{1}{x}[/mm] -
> [mm]\integral_{a}^{b}{\bruch{1}{x}*lnx dx}[/mm]
>



Das stimmt nicht!

Richtig wäre:

[mm]\integral_{}^{}{lnx*\bruch{1}{x}dx}= [/mm][mm] (lnx)^2 [/mm] -[mm]\integral_{}^{}{\bruch{1}{x}*lnx dx}[/mm] ,

also

2 [mm] \integral_{}^{}{lnx*\bruch{1}{x}dx} [/mm] = [mm] (lnx)^2 [/mm]

FRED




> aber das hat mir ja dann im prinzip gar nichts gebracht.
> habe ich ein falsches verfahren gewählt oder muss ich die
> terme noch weiter umformen?
>  wäre froh wenn mir jemand weiterhelfen kann :)
>  


Bezug
                
Bezug
integration lnx/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Mo 23.02.2009
Autor: ljoker

aber was setze ich denn dann da für u(x), v(x) usw?

die umformung verstehe ich leider auch nicht. woher kommt die 2 vor dem integral. nach welchen regeln konntest du das so umformen?

Bezug
                        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:18 Mo 23.02.2009
Autor: fred97


> aber was setze ich denn dann da für u(x), v(x) usw?
>

u und v hast Du schon richtig gewählt . Dann ist $uv = [mm] (lnx)^2$ [/mm]   !!!



> die umformung verstehe ich leider auch nicht. woher kommt
> die 2 vor dem integral. nach welchen regeln konntest du das
> so umformen?





$ [mm] \integral_{}^{}{lnx\cdot{}\bruch{1}{x}dx}= [/mm] $$ [mm] (lnx)^2 [/mm] $ -$ [mm] \integral_{}^{}{\bruch{1}{x}\cdot{}lnx dx} [/mm] $


Addiere  mal auf beiden Seten  $ [mm] \integral_{}^{}{\bruch{1}{x}\cdot{}lnx dx} [/mm] $



FRED

Bezug
                                
Bezug
integration lnx/x: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:30 Mo 23.02.2009
Autor: ljoker

achso ja stimmt, da war am anfang ein tippfehler von mir drin.

wenn ich den letzten schritt dann noch umforme und durch zwei dividiere erhalte ich die stammfunktion [mm] \bruch{(lnx)^{2}}{2}, [/mm] richtig?

das ist aber umständlich ;) eine leichtere lösung gibts nicht?

Bezug
                                        
Bezug
integration lnx/x: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 23.02.2009
Autor: fred97


> achso ja stimmt, da war am anfang ein tippfehler von mir
> drin.
>  
> wenn ich den letzten schritt dann noch umforme und durch
> zwei dividiere erhalte ich die stammfunktion
> [mm]\bruch{(lnx)^{2}}{2},[/mm] richtig?

Ja


>  
> das ist aber umständlich ;) eine leichtere lösung gibts
> nicht?



Ich weiß nicht, was es da zu meckern gibt


FRED

Bezug
                                        
Bezug
integration lnx/x: siehe unten!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mo 23.02.2009
Autor: Loddar

Hallo ljoker!


> das ist aber umständlich ;) eine leichtere lösung gibts nicht?

Umständlich würde ich das nicht gerade bezeichnen. Aber es gibt eine Alternativlösung.


Gruß
Loddar



Bezug
        
Bezug
integration lnx/x: Alternative
Status: (Antwort) fertig Status 
Datum: 17:32 Mo 23.02.2009
Autor: Loddar

Hallo ljoker!


Du kannst auch alternativ mittels Substitution vorgehen.

Substituiere hier: $z \ := \ [mm] \ln(x)$ [/mm] .


Gruß
Loddar


Bezug
                
Bezug
integration lnx/x: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Mo 23.02.2009
Autor: ljoker

alles klar, danke euch. habt mir auf jedenfall geholfen :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]