matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisinklusionsbeziehung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Funktionalanalysis" - inklusionsbeziehung
inklusionsbeziehung < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inklusionsbeziehung: Anzahl der Elemente ermitteln
Status: (Frage) beantwortet Status 
Datum: 11:25 Mi 18.10.2006
Autor: wulfstone

Aufgabe
Es sei x:=2^(BxB). Wie viele Elemente hat die Menge X?

Wobei B für die Menge der Wahrheitswerte steht.

Wir gehen davon aus das es 16 sind,
da die Kardinalität von B  2 also |B|=2   =>  2^(|B|)
=> [mm] 2^2 [/mm] => 4
und deshalb ist 2^(2 *2) also 16.
Danke schon einmal im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
inklusionsbeziehung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:57 Mi 18.10.2006
Autor: angela.h.b.


> Es sei x:=2^(BxB).

Hallo,

was ist denn mit [mm] 2^{(BxB)} [/mm] gemeint? Ich kenne diese Schreibweise nicht, vermute aber: die Potenzmenge.

Da die Menge B ja äußerst übersichtlich ist und BxB nur unwesentlich größer,
könnte man sich die Elemente der Potenzmenge von BxB ja sogar aufschreiben.
Laß uns mal zählen:

A. [mm] \emptyset [/mm]
B. 4 einelementige Mengen
C. 6 zweielementige
D. 4 dreielementige
E. BxB

Also enthält die Potenzmenge 16 Elemente, wie Du schon festgestellt hattest.

Gruß v. Angela

Bezug
                
Bezug
inklusionsbeziehung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:31 Mi 18.10.2006
Autor: wulfstone

danke schön, bin gerade neu an der uni und muss erst einmal fuss fassen.


MfG
Wulfstone

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]