matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeninhomogene Differentialgl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - inhomogene Differentialgl
inhomogene Differentialgl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogene Differentialgl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:28 Fr 23.05.2014
Autor: Valkyrion

Aufgabe
geg.:

y''(x) -5y'(x) + 6y = [mm] 4xe^{x} [/mm] - sin(x);
ges.: allg. Lsg.

Für die Störfkt. -sin(x) gibt es ja den Ansatz:
[mm] y_{p}(x)=Csin(ßx+phi). [/mm] Wie komme ich dann jetzt aber auf die Werte von C und phi?

Bzw. wenn ich es über den Ansatz [mm] y_{p}(x)= (b/P(i))*e^{ix} [/mm] mache, erhalte ich erst mal [mm] (1/P(i))*e^{ix}. [/mm] Wo kommt die 1 her?
der weitere Rechenweg wäre laut Lsg.: [mm] -(1/(5-5i))*e^{ix}=-(1/10)*(1+i)*e^{ix}=(\wurzel{2}/10)*(e^{i(5/4)\pi})*e^{ix}; [/mm]
Wie kommt man auf das - am Anfang?
Wie auf die 10 im Nenner, auf [mm] \wurzel{2}, [/mm] und auf die [mm] e^{i(5/4)\pi}? [/mm]

        
Bezug
inhomogene Differentialgl: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Fr 23.05.2014
Autor: leduart

Hallo
wenn du die 2 Inhomogenitäten einzeln behandelst setz due einfach deinen ansatz in die Dgl mit rechter Seite sin(x) ein und bestimmst C und [mm] \phi [/mm] so, dass die Dgl erfüllt ist. meist ist der ansatz Asin(x) +Bcos(x) einfacher zu rechnen.
was dein P(i) sein soll weiss ich nicht in deinem zweiten Ansatz., auch hier einfach den Ansatz einsetzen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]