matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungeninhomogene Diff-Gl
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - inhomogene Diff-Gl
inhomogene Diff-Gl < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

inhomogene Diff-Gl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:27 Di 07.02.2012
Autor: zoj

Aufgabe
Lösen Sie das folgende Anfangswertproblem:
[mm] \vektor{\dot{x_{1}}\\\dot{x_{2}}} [/mm] = [mm] \frac{1}{2}\pmat{7 & 1 \\ -1 & 5}\vektor{x_{1}\\x_{2}}+\vektor{2\\-4}, x_{1}(0)=2, x_{2}(0)=1. [/mm]

Habe eine Frage zu der Eigenwertzerlegung von A = [mm] VJV^{-1}. [/mm]

[mm] J=\pmat{ 3 & 1 \\ 0 & 3 } [/mm]

Woher kommt die 1 in der oberen rechten Ecke?
Bei der Eigenwertzerleguing von homogenen DGL's standen die Eigenwerte auf der Diagonalen, die restlichen Werte waren Null.



        
Bezug
inhomogene Diff-Gl: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Di 07.02.2012
Autor: donquijote


> Lösen Sie das folgende Anfangswertproblem:
>  [mm]\vektor{\dot{x_{1}}\\\dot{x_{2}}}[/mm] = [mm]\frac{1}{2}\pmat{7 & 1 \\ -1 & 5}\vektor{x_{1}\\x_{2}}+\vektor{2\\-4}, x_{1}(0)=2, x_{2}(0)=1.[/mm]
>  
> Habe eine Frage zu der Eigenwertzerlegung von A =
> [mm]VJV^{-1}.[/mm]
>  
> [mm]J=\pmat{ 3 & 1 \\ 0 & 3 }[/mm]
>  
> Woher kommt die 1 in der oberen rechten Ecke?
>  Bei der Eigenwertzerleguing von homogenen DGL's standen
> die Eigenwerte auf der Diagonalen, die restlichen Werte
> waren Null.
>  
>  

Stichwort Jordansche Normalform
Diese Matrix ist nicht diagonalisierbar, da 3 als einziger Eigenwert die geometrische Vielfachheit 1 hat, es gibt somit keine Basis aus Eigenvektoren.

Bezug
                
Bezug
inhomogene Diff-Gl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Di 07.02.2012
Autor: zoj

Aha,
dann würde also theoretisch bei einer nicht Daigonasisierbaren Matrix mit dem doppelten Eigenwert a folgende Jordanmatrix rauskommen: [mm] \pmat{a & 1\\0 & a} [/mm]
richtig?


V= [mm] \pmat{1&1 \\ -1 & 1} [/mm] , [mm] V^{-1} =\pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}} [/mm]
=>  [mm] \pmat{1&1 \\ -1 & 1} \pmat{e^{3t}&te^{3t}\\0&e^{3t}} \pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}\vektor{x1(0)\\x2(0)} [/mm]
Was mich bei der weiteren Rechnung aufhält, ist das [mm] te^{3t}. [/mm] Sollte da nicht [mm] e^{t} [/mm] stehen?



Bezug
                        
Bezug
inhomogene Diff-Gl: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Di 07.02.2012
Autor: donquijote


> Aha,
>  dann würde also theoretisch bei einer nicht
> Daigonasisierbaren Matrix mit dem doppelten Eigenwert a
> folgende Jordanmatrix rauskommen: [mm]\pmat{a & 1\\0 & a}[/mm]
>  
> richtig?

ja

>  
>
> V= [mm]\pmat{1&1 \\ -1 & 1}[/mm] , [mm]V^{-1} =\pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}[/mm]
>  
> =>  [mm]\pmat{1&1 \\ -1 & 1} \pmat{e^{3t}&te^{3t}\\0&e^{3t}} \pmat{\frac{1}{2}&-\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2}}\vektor{x1(0)\\x2(0)}[/mm]

>  
> Was mich bei der weiteren Rechnung aufhält, ist das
> [mm]te^{3t}.[/mm] Sollte da nicht [mm]e^{t}[/mm] stehen?

Das System [mm] \vektor{x'\\y'}=\pmat{a & 1\\0 & a}\vektor{x\\y} [/mm] hat Lösungen der Form
[mm] \vektor{x\\y}=\vektor{t*e^{at}\\e^{at}} [/mm] und [mm] \vektor{x\\y}=\vektor{e^{at}\\0} [/mm]
(und Linearkombinationen davon), was man durch einsetzen nachprüfen kann.
Dies ist ein Sonderfall der allgemeinen Lösung eines linearen Differentialgleichungssystems, wenn die Koeffizientenmatrix nicht diagonalisierbar ist.

>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]