matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisimplizite funktionen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - implizite funktionen
implizite funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

implizite funktionen: aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:09 Do 14.04.2005
Autor: joy04

Sei F(x,y):=x²+y²-a² (x,y)  [mm] \varepsilon \IR^{2}! [/mm] Bestimmen sie die ableitung der implizit definierten Funktion g mit F(x,g(x))=0 einmal mit Hilfe des satzes über implizit definierte FUnktionen und außerdem direkt durch auflösen der funktion!

Weiß jemand was ich im einzelnen zu tun hab?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
implizite funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 Do 14.04.2005
Autor: Julius

Hallo joy04!

Nun:

Zunächst wissen wir aus dem Satz über implizite Funktionen (der hier eigentlich nicht global anwendbar ist, da der Gradient im Nullpunkt verschwindet!), dass

$g'(x) = - [mm] \frac{\frac{\partial F}{\partial x}(x,g(x))}{\frac{\partial F}{\partial y}(x,g(x))} [/mm] = [mm] \frac{-2x}{2g(x)} [/mm] = [mm] -\frac{x}{g(x)}$ [/mm]

gilt.

Weiterhin können wir aber doch die Gleichung

[mm] $x^2 [/mm] + [mm] (g(x))^2 -a^2=0$ [/mm]

auch nach $g(x)$ auflösen (Achtung!) und dann ableiten.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]