matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Komplexe Zahleni hoch pi berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Komplexe Zahlen" - i hoch pi berechnen
i hoch pi berechnen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

i hoch pi berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Di 17.11.2009
Autor: katjap

Aufgabe
Berechnen Sie alle werte von [mm] i^{pi} [/mm]

Hallo!

ich weiss ja, dass für komplexe Zahlen z1,z2 für [mm] z1^{z2} [/mm] gilt:
[mm] z1^{z2} [/mm] = [mm] e^{z2log(z1)} [/mm]

hm ich hab dann mal gedacht, dass dann
z1= i und [mm] z2=\pi [/mm]

aber wenn ich das nun einsetze komme ich auf:
[mm] e^{\pi* log(i)} [/mm]

und dann komme ich nciht weiter,
kann mir jemand helfen oder ist der ansatz schon falsch?

danke!

        
Bezug
i hoch pi berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Di 17.11.2009
Autor: fred97


> Berechnen Sie alle werte von [mm]i^{pi}[/mm]
>  Hallo!
>  
> ich weiss ja, dass für komplexe Zahlen z1,z2 für [mm]z1^{z2}[/mm]
> gilt:
>  [mm]z1^{z2}[/mm] = [mm]e^{z2log(z1)}[/mm]
>  
> hm ich hab dann mal gedacht, dass dann
>  z1= i und [mm]z2=\pi[/mm]
>  
> aber wenn ich das nun einsetze komme ich auf:
>  [mm]e^{\pi* log(i)}[/mm]
>  
> und dann komme ich nciht weiter,



Das ist schon mal gut:

    [mm]i^{\pi}=e^{\pi* log(i)}[/mm]


Jetzt bestimme alle Logarithmen von $i$, dann bekommst Du alle Werte von [mm]i^{\pi}[/mm]

FRED


>  kann mir jemand helfen oder ist der ansatz schon falsch?
>  
> danke!


Bezug
                
Bezug
i hoch pi berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Di 17.11.2009
Autor: katjap

hm,
also ln(z) ist ja definiert als:
ln|z|+i (arg z+ 2k [mm] \pi) [/mm]

ln|z|müsste ja gleich 0 sein, oder?
und argz= 0,5* [mm] \pi [/mm]

ist das dann korrekt so?

also man muesste dann aufschreiben:

[mm] e^{\pi*i*(0,5\pi + 2k\pi)} [/mm]

gruss katja

Bezug
                        
Bezug
i hoch pi berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Di 17.11.2009
Autor: fred97


> hm,
>  also ln(z) ist ja definiert als:
>  ln|z|+i (arg z+ 2k [mm]\pi)[/mm]
>  
> ln|z|müsste ja gleich 0 sein, oder?
>  und argz= 0,5* [mm]\pi[/mm]
>  
> ist das dann korrekt so?

Ja

FRED

>  
> also man muesste dann aufschreiben:
>  
> [mm]e^{\pi*i*(0,5\pi + 2k\pi)}[/mm]
>  
> gruss katja


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]