matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysishomogene Differentialgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis" - homogene Differentialgleichung
homogene Differentialgleichung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

homogene Differentialgleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:41 Do 17.11.2005
Autor: sole

Hi!
Ich soll die Differentialgleichung y'=Ay lösen, wobei
A= [mm] \pmat{ 1 & -3 & 1 & 0 \\ 2 & -4 & 1 & -1 \\ 0 & 0 & -1 & -2 \\ -2 & 3 & -1 & 0 } [/mm]
Das charakteristische Polynom von A ist nach meinen Rechnungen gleich [mm] (X+1)^{4}, [/mm] der Eigenraum zum Eigenwert -1 gleich
< [mm] \vektor{0 \\ 1 \\ 3 \\ 0},\vektor{-1 \\ 0 \\ 2 \\ 0},\vektor{3 \\ 2 \\ 0 \\ 0}>. [/mm]
Ich weiss das wenn ich einen dieser Eigenvektoren mit [mm] e^{-t} [/mm] multipliziere dies eine Lösung der Differentialgleichung ist (und Linearkombinationen dieser Lösungen auch). Die Frage ist jetzt: falls die Eigenvektoren eine Basis von [mm] \IC^{n} [/mm] bilden habe ich ein Lösungsfundamentalsystem gefunden, aber wie ist das in diesem Fall? Gibt es eine weitere Lösung? Wie finde ich die?
Vielen dank, ~sole

        
Bezug
homogene Differentialgleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:45 Do 17.11.2005
Autor: sole

edit: sorry falsche Mitteilung
Bezug
        
Bezug
homogene Differentialgleichung: Teilantwort
Status: (Antwort) fertig Status 
Datum: 10:05 Sa 19.11.2005
Autor: Toellner

Hallo Sole,

da die Antwort überfällig ist, ich aber (leider!) keine Zeit habe, sie selber nachzurechnen, nur ein paar Gedanken zu Deinem Posting:
Wenn Du richtig gerechnet hast, gibt es nur einen Eigenwert -1, das ändert sich auch in [mm] \IC [/mm] nicht.
Dein Eigenraum ist nur zweidimensional (die angegeben 3 "Basisvektoren" sind linear abhängig) wenn Du die DGL mit einer Orthogonal-Trafo zu entkoppeln versuchst, entstehen Komponenten-DGL's mir jeweils zwei Variablen (Stichwort: Jordan-Form).
Die müsste man sich anschaun, ob einem dazu was einfällt...
Picard-Lindelöf für eine Näherungslöung geht jedenfalls immer.

Soviel nur, auf die Schnelle,

Richard

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]