matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra Sonstigesgruppentheorie
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - gruppentheorie
gruppentheorie < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gruppentheorie: neutrales element
Status: (Frage) beantwortet Status 
Datum: 18:20 Sa 20.11.2010
Autor: mathetuV

sei [mm] G:=\{x \in \IR: 0<=x<1 \} [/mm] und [mm] H:=\{(x,y)\in \IR^{2}\} [/mm] ich soll zeigen dass [mm] (G,\oplus) [/mm] eine gruppe ist mit folgender verknüpfung:

[mm] x\oplus y:=\begin{cases} x+y, & \mbox{für } x+y<1\mbox{ } \\x+y-1, & \mbox{für } x+y\ge 1 \mbox{ } \end{cases} [/mm]

was ist das neutales und inverse element?

0 kann das neutrale element ja nicht sein oder?

        
Bezug
gruppentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 20.11.2010
Autor: angela.h.b.


> sei [mm]G:=\{x \in \IR: 0<=x<1 \}[/mm] und [mm]H:=\{(x,y)\in \IR^{2}\}[/mm]
> ich soll zeigen dass [mm](G,\oplus)[/mm] eine gruppe ist mit
> folgender verknüpfung:
>  
> [mm]x\oplus y:=\begin{cases} x+y, & \mbox{für } x+y<0\mbox{ } \\ x+y-1, & \mbox{für } x+y\ge 1 \mbox{ } \end{cases}[/mm]
>  
> was ist das neutales und inverse element?
>  
> 0 kann das neutrale element ja nicht sein oder?

Hallo,

warum nicht?
Was hast Du Dir überlegt?

Gruß v. Angela


Bezug
                
Bezug
gruppentheorie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Sa 20.11.2010
Autor: mathetuV

null habe ich mit schon übelegt aber als ich über das inverse elemnt nachgedachte habe bin ich durch einnader gekommen, also wenn z.b x1+0=x2, dann muss doch das x2 negativ sein oder, aber die menge G lääst keine negativen elmente zu

danke für deine schnelle antwort,

oben hat du hingecshrieben x+y <0 die aufgabenstellung hei0t aber, x+y<1.
und der zweite teil stimmt, kannst du mir da helfen wenn ich falsch denke

Bezug
                        
Bezug
gruppentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:18 Sa 20.11.2010
Autor: mathetuV

kann mir da jemand helfen?

Bezug
                        
Bezug
gruppentheorie: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Sa 20.11.2010
Autor: jumape

0 ist das neutrale Element,
das inverse zu x ist dann 1-x, denn dann ist x+y=x+(1-x)=1 [mm] \ge [/mm] 1
also [mm] x\oplusy=x+(1-x)-1=0 [/mm]

Ist ein bischen tricky, aber probiers aus und du wirst es sehen.

schönes wochenende noch
jumape

Bezug
                                
Bezug
gruppentheorie: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Sa 20.11.2010
Autor: mathetuV

vielen dank für deine hilfe und dir auch ein schönes wochenende

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]