matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Grenzwertegrenzwert mit substitution
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Folgen und Grenzwerte" - grenzwert mit substitution
grenzwert mit substitution < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

grenzwert mit substitution: korrektur
Status: (Frage) beantwortet Status 
Datum: 09:32 Sa 17.09.2011
Autor: freak-club

Aufgabe
berechne [mm] \limes_{x\rightarrow\infty} sin\bruch{1}{x} [/mm] sowie [mm] \limes_{x\rightarrow\ 0} sin\bruch{1}{x} [/mm]

hallo,

also für [mm] \limes_{x\rightarrow\ 0} [/mm] f(x) ist klar, division durch 0 geht nicht, somit substituiere ich, setze u= 1/x, daraus folgt:

[mm] \limes_{x\rightarrow\infty} [/mm] sin(u)= existiert nicht.

bei dem zweiten, also [mm] \limes_{x\rightarrow\infty}sin\bruch{1}{x} [/mm] könnte ich jetzt auch substituieren, dann hätte ich [mm] \limes_{x\rightarrow\ 0} [/mm] sin(u) =0

muss ich da denn überhaupt substituieren?

wenn ich [mm] \limes_{x\rightarrow\infty} sin\bruch{1}{x} [/mm] habe ist ja [mm] 1/\infty [/mm] =0 somit hätte ich ja auch ohne substituieren sin(0) =0.

also muss ich substituieren oder kann ich mir das sparen im falle x gegen unendlich?

danke für jede hilfe

        
Bezug
grenzwert mit substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:04 Sa 17.09.2011
Autor: Diophant

Hallo,

für [mm] x->\infty [/mm] kannst du dir die Substitution schenken. Der Grenzwert ist 0, und das hast du ja auch.
Für den Fall x->0 ist das prinzipiell mit der Substitution eine gute Idee, aber du musst dann natürölich auch das x unter dem limes substituieren, auf Deutsch: du musst angeben, gegen welchen Wert u strebt und nach wie vor begründen, weshalb es für diesen Fall keinen Grenzwert gibt.

In welchem Zusammenhang ist denn die Aufgabe gestellt worden und ist dir der Begriff Häufungspunkt geläufig?

Gruß, Diophant

Bezug
        
Bezug
grenzwert mit substitution: Antwort
Status: (Antwort) fertig Status 
Datum: 10:10 Sa 17.09.2011
Autor: fred97


> berechne [mm]\limes_{x\rightarrow\infty} sin\bruch{1}{x}[/mm] sowie
> [mm]\limes_{x\rightarrow\ 0} sin\bruch{1}{x}[/mm]
>  hallo,
>  
> also für [mm]\limes_{x\rightarrow\ 0}[/mm] f(x) ist klar, division
> durch 0 geht nicht, somit substituiere ich, setze u= 1/x,
> daraus folgt:
>  
> [mm]\limes_{x\rightarrow\infty}[/mm] sin(u)= existiert nicht.

Du meinst wohl

              [mm]\limes_{u\rightarrow\infty}[/mm] sin(u)

ex. nicht. Da stimmt, aber warum ???

>  
> bei dem zweiten, also
> [mm]\limes_{x\rightarrow\infty}sin\bruch{1}{x}[/mm] könnte ich
> jetzt auch substituieren, dann hätte ich
> [mm]\limes_{x\rightarrow\ 0}[/mm] sin(u) =0


?????

Richtig:  [mm]\limes_{u\rightarrow\ 0}[/mm] sin(u) =0


FRED

>  
> muss ich da denn überhaupt substituieren?
>  
> wenn ich [mm]\limes_{x\rightarrow\infty} sin\bruch{1}{x}[/mm] habe
> ist ja [mm]1/\infty[/mm] =0 somit hätte ich ja auch ohne
> substituieren sin(0) =0.
>  
> also muss ich substituieren oder kann ich mir das sparen im
> falle x gegen unendlich?
>  
> danke für jede hilfe


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]