matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTopologie und Geometrieglatte Raumflächen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Topologie und Geometrie" - glatte Raumflächen
glatte Raumflächen < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

glatte Raumflächen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 22.06.2006
Autor: sonnenfee23

Aufgabe
Sei a: U -> [mm] \IR^3 [/mm] Parametrisierung einer glatten Raumfläche S um p [mm] \in [/mm] S, [mm] a_{u}, a_{v} [/mm] die "a-kanonische Basis" der Tangentialebene [mm] T_{p}S [/mm] von S in p und N(p) ein Normaleneinheitsvektor von S in p.
Man zeige, dass die durch [mm] f(a_{u}) [/mm] := N(p) x [mm] a_{u}, f(a_{v}) [/mm] := N(p) x [mm] a_{v} [/mm] definierte lineare Abbildung von [mm] T_{p}S [/mm] in sich eine Isometrie von [mm] T_{p}S [/mm] ist und gebe die Matrix von f an bezüglich der a-kanonischen Basis von [mm] T_{p}S. [/mm]

Hallo!
Mir fehlt jegliche Idee diese Aufgabe auf Papier zu bringen...

Kann mir wer helfen??*liebgugg*

Lg

        
Bezug
glatte Raumflächen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:16 Do 22.06.2006
Autor: MatthiasKr

Hallo Uschi,

mal ein paar tips dazu, genau durchdenken musst das schon auch du! alle infos, die man für die aufgabe braucht, sind eigentlich elementare aussagen über skalarprodukt und kreuzprodukt, die man auf wikipedia finden kann....

Also [mm] $f:T_p [/mm] S [mm] \to T_p [/mm] S$ ist gegeben durch [mm] $f(t)=N(p)\times [/mm] t, [mm] t\in T_p [/mm] S$.

zu zeigen ist [mm] $=, \forall t_1,t_2\in T_p [/mm] S$

fangen wir an:

[mm] $=$ [/mm]


Nun lösen wir das Skalarprodukt auf

[mm] $...=|N\times t_1|\cdot |N\times t_2|\cdot \cos \theta$, [/mm]

wobei [mm] $\theta$ [/mm] der Winkel zwischen den [mm] $N\times t_i$ [/mm] ist. Weiter gilt

[mm] $...=|t_1|\cdot |t_2| \cdot \cos \theta$, [/mm] (definition des K-produktes)

man muss sich nun klarmachen, zB mit der drei-finger-regel für das kreuzprodukt, dass [mm] $\theta$ [/mm] auch der winkel zwischen den [mm] $t_i$ [/mm] ist, deshalb

[mm] $...=$. [/mm] Erster Teil erledigt.


Zum zweiten Teil der Aufgabe: du musst koeffizienten [mm] $\mu_1,\mu_2$ [/mm] finden, so dass

[mm] $f(a_u)=N(p)\times a_u=\mu_1\cdot a_u [/mm] + [mm] \mu_2\cdot a_v$ [/mm] gilt. Analog für [mm] $f(a_v)$. [/mm]

Helfen können dir dabei einige rechenregeln für das KP (->Wiki), wie zB. die Graßmann-Identität. Außerdem solltest du wohl die Normale als kreuzprodukt der a-kanonischen Basisvektoren [mm] $a_u$ [/mm] und [mm] $a_v$ [/mm] darstellen.

Am Ende wird dabei eine matrix herauskommen, die mit der ersten Fundamentalform zu tun hat (oder der Inversen). Habe das aber nicht zu ende gerechnet.

Gruß
Matthias


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]