matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieggt und kgv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Zahlentheorie" - ggt und kgv
ggt und kgv < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggt und kgv: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:09 Mi 19.04.2006
Autor: AriR

(frage zuvor nicht gestellt)

Hey Leute, weiß einer von euch wo ich den Beweis zu folgemden Satz finde:
Satz Kleinstes gemeinsames Vielfaches und größter gemeinsamer Teiler hängen durch folgende Gleichung zusammen:

a·b=ggT(a,b)·kgV(a,b)
Beweis: Primfaktorzerlegung.


Wäre euch sehr dankbar :) Gruß Ari

        
Bezug
ggt und kgv: Antwort
Status: (Antwort) fertig Status 
Datum: 10:51 Mi 19.04.2006
Autor: sirprize

Hi Ari,

ich weiss gar nicht, ob man das als "Beweis" irgendwo findet. In meinem Zahlentheorie-Skript ist es als Korollar angegeben (und nicht bewiesen worden). Liegt vermutlich daran, dass der Beweis sehr einfach ist:

Betrachte die Zahlen a, b und c in ihrer Primfaktorzerlegung:
$a = [mm] \pm p_1^{\alpha_{1}}*\ldots*p_r^{\alpha_{r}}$ [/mm]
$b = [mm] \pm p_1^{\beta_{1}}*\ldots*p_r^{\beta_{r}}$ [/mm]
$c = [mm] \pm p_1^{\gamma_{1}}*\ldots*p_r^{\gamma_{r}}$ [/mm]
(Wenn einer der Primfaktoren in a, b oder c nicht vorkommt, setze einfach den Exponenten auf 0)

Wann ist denn nun c = ggT(a,b)? Und wann ist c = kgV(a,b)?
Ganz einfach:
$c = [mm] \pm [/mm] ggT(a,b) [mm] \gdw \gamma_i [/mm] = min( [mm] \alpha_i, \beta_i [/mm] ) [mm] \forall [/mm] i = [mm] 1,\ldots,r$ [/mm]
$c = [mm] \pm [/mm] kgV(a,b) [mm] \gdw \gamma_i [/mm] = max( [mm] \alpha_i, \beta_i [/mm] ) [mm] \forall [/mm] i = [mm] 1,\ldots,r$ [/mm]

Und wie sieht denn a*b in der Primfaktorzerlegung aus:
$a*b = [mm] \pm p_1^{\alpha_{1}+\beta_{1}}*\ldots*p_r^{\alpha_{r}+\beta_{r}}$ [/mm]
So sieht kgV(a,b) * ggT(a,b) aus:
$kgV(a,b) * ggT(a,b) = [mm] \pm p_1^{min( \alpha_1, \beta_1 )+max( \alpha_1, \beta_1 )}*\ldots*p_r^{min( \alpha_r, \beta_r )+max( \alpha_r, \beta_r )}$ [/mm]

Da nun min(x,y)+max(x,y) = x+y gilt (selber rausfinden warum!), ist klar, dass beide Primfaktordarstellungen identisch sind und somit
a*b = ggT(a,b)*kgV(a,b) gilt.

Alles klar?

Viele Grüße,
Michael

Bezug
                
Bezug
ggt und kgv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:19 Mi 19.04.2006
Autor: AriR

ja ist klar geworden.. wir hatten nie diese schönen definition für den ggt und kgv so aufgeschrieben :)


viel dank :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]