matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorieggT
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - ggT
ggT < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ggT: Eigenschaften
Status: (Frage) beantwortet Status 
Datum: 17:10 So 28.02.2010
Autor: Julia2009

Ich bin gerade dabei die Eigenschaften eines ggT zu beweisen.

Für zwei Eigenschaften des ggT fehlt mir jedoch eine Beweisidee:
Und zwar für die Eigenschaften:

(1) ggt(a,b)=ggt(a,b-a)
(2) d sei der ggt(a,b)->a/d und b/d sind teilerfremd

Wär super, wenn mir jemand weiterhelfen könnte!

Lg!
Julia2009

        
Bezug
ggT: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 So 28.02.2010
Autor: nooschi


> Ich bin gerade dabei die Eigenschaften eines ggT zu
> beweisen.
>  
> Für zwei Eigenschaften des ggT fehlt mir jedoch eine
> Beweisidee:
> Und zwar für die Eigenschaften:
>  
> (1) ggt(a,b)=ggt(a,b-a)

ich würde zeigen: [mm] $ggt(a,b)\le [/mm] ggt(a,b-a), [mm] ggt(a,b)\ge [/mm] ggt(a,b-a)$ aus dem folgt dann $ggt(a,b)=ggt(a,b-a)$.

Beweis [mm] $ggt(a,b)\le [/mm] ggt(a,b-a)$:
sei $x=ggt(a,b)$. das heisst [mm]x|a[/mm]. zu zeigen bleibt nur noch [mm]x|(b-a)[/mm]. Schreibe dazu [mm]a=x\cdot a^\*[/mm] und [mm]b=x\cdot b^\*[/mm]. Dabei sind [mm]a^\*, b^\*\in \IN[/mm] da [mm]x=ggt(a,b)[/mm], also [mm]x|a[/mm] und [mm]x|b[/mm]. [mm] $$\Rightarrow (b-a)=x\cdot b^\*-x\cdot a^\*=x\cdot (b^\*-a^\*) \Rightarrow [/mm] x|(b-a)$$
Beweis [mm] $ggt(a,b)\ge [/mm] ggt(a,b-a)$:
sei [mm]x=ggt(a,b-a)[/mm]. Es gilt also [mm]x|a[/mm]. zu zeigen bleibt [mm]x|b[/mm]. Schreibe wieder  [mm]a=x\cdot a^\*[/mm] und [mm]b-a=x\cdot (b^\*-a^\*^\*)[/mm]. Dabei gilt wieder [mm]a^\*\in\IN[/mm] und [mm](b^\*-a^\*^\*)\in\IN[/mm]. [mm] $$\Rightarrow [/mm] b = (b-a) + a = [mm] x\cdot (b^\*-a^\*^\*)+x\cdot a^\*=x\cdot ((b^\*-a^\*^\*)+a^\*)$$ [/mm] die Summe natürlicher Zahlen ist wieder eine natürliche Zahl, also gilt [mm]x|b[/mm].


> (2) d sei der ggt(a,b)->a/d und b/d sind teilerfremd

Angenommen es existiert [mm]x\not= 1, x\in\IN[/mm] sodass [mm]x|(a/d)[/mm] und [mm]x|(b/d)[/mm]. das ist aber das selbe wie [mm](x\cdot d)|a[/mm] und [mm](x\cdot d)|b[/mm]. Da [mm]x\not= 1[/mm], wäre [mm](x\cdot d)[/mm] eine natürliche Zahl, welche a und b teilt und grösser als d ist. Widerspruch zu [mm]d=ggt(a,b)[/mm].

> Wär super, wenn mir jemand weiterhelfen könnte!
>  
> Lg!
>  Julia2009  


Bezug
        
Bezug
ggT: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Di 02.03.2010
Autor: Julia2009

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]