matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMathe Klassen 8-10ges Funktion durch Bedingungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mathe Klassen 8-10" - ges Funktion durch Bedingungen
ges Funktion durch Bedingungen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ges Funktion durch Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Do 03.11.2016
Autor: RobKobin

Hallo,

Da ich die Erfahrung gemacht habe dass meine Skizzen mehr verwirren als helfen, hier alles als Sätze ausgedrückt.

Ich suche die Funktion [mm]f(x)[/mm].

[mm]f(x)[/mm] ist eine Funktion zweiten Grades.
[mm]f(x)[/mm] und die Funktion zweiten Grades [mm]g(x)[/mm] haben einen Berührungspunkt.
Dieser Punkt liegt bei [mm]( d | \wurzel{d^2+k^2} )[/mm].
Die Steigung beider Funktionen an diesem Punkt ist [mm]v_y/v_x[/mm].
[mm]v_y[/mm] is gleich [mm]\wurzel{(h+k-\wurzel{d^2+k^2})*2*9,81}[/mm].
[mm]g(0)[/mm] hat den Wert [mm]k-a[/mm]
[mm]g'(0)[/mm] hat den Wert [mm]0[/mm].

Bekannt ist: [mm]k, h, v_x, a[/mm]
Unbekannt ist: [mm]d, v_y, f(x), g(x)[/mm]
Gesucht ist: [mm]f(x)[/mm]

Hinweise: [mm]f(x)[/mm] ist eine nach unten geöffnete Parabel und [mm]g(x)[/mm] eine nach oben geöffnete Parabel. Außerdem sind die genannten Stellen und Werte positiv.

Reichen die Angaben um meine Aufgabe zu lösen?

        
Bezug
ges Funktion durch Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:31 Do 03.11.2016
Autor: abakus


> Hallo,
>  
> Da ich die Erfahrung gemacht habe dass meine Skizzen mehr
> verwirren als helfen, hier alles als Sätze ausgedrückt.
>  
> Ich suche die Funktion [mm]f(x)[/mm].
>  
> [mm]f(x)[/mm] ist eine Funktion zweiten Grades.
>  [mm]f(x)[/mm] und die Funktion zweiten Grades [mm]g(x)[/mm] haben einen
> Berührungspunkt.
>  Dieser Punkt liegt bei [mm]( d | \wurzel{d^2+k^2} )[/mm].
>  Die
> Steigung beider Funktionen an diesem Punkt ist [mm]v_y/v_x[/mm].
>  [mm]v_y[/mm] is gleich [mm]\wurzel{(h+k-\wurzel{d^2+k^2})*2*9,81}[/mm].
>  [mm]g(0)[/mm] hat den Wert [mm]k-a[/mm]
>  [mm]g'(0)[/mm] hat den Wert [mm]0[/mm].
>  
> Bekannt ist: [mm]k, h, v_x, a[/mm]
>  Unbekannt ist: [mm]d, v_y, f(x), g(x)[/mm]
>  
> Gesucht ist: [mm]f(x)[/mm]
>  
> Hinweise: [mm]f(x)[/mm] ist eine nach unten geöffnete Parabel und
> [mm]g(x)[/mm] eine nach oben geöffnete Parabel. Außerdem sind die
> genannten Stellen und Werte positiv.
>  
> Reichen die Angaben um meine Aufgabe zu lösen?

g hat also den Scheitelpunkt auf der y-Achse im Punkt (0|k-a).
Die Gleichung von g(x) hat also die Form g(x)=c*x²+(k-a).
Bestimme zunächst den Streckungsfaktor c so, dass g(x) tatsächlich durch den Punkt [mm]( d | \wurzel{d^2+k^2} )[/mm] verläuft.
Wenn du damit die komplette Funktionsgleichung von g hast, kannst du auch den Anstieg von g (und damit auch von f) an der Stelle x=d berechnen.

Die Funktion f ist aber nicht eindeutig bestimmt, denn man kennt nur zwei statt der erforderlichen 3 Bedingungen.

Bezug
                
Bezug
ges Funktion durch Bedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:04 Fr 04.11.2016
Autor: RobKobin

Danke für die Antwort!

Dann eine andere Idee:

Kann ich eine Funktion dritten Grades aus folgenden Informationen herleiten?

f(0)=k-a
f'(0)=0
Der Wendepunkt ist vom Nullpunkt k entfernt und liegt im ersten Quadrant.
f'''(x)>0
Zwischen Wendepunkt und Hochpunkt liegt der Punkt A im ersten Quadrant mit dem Wert k und der Steigung s.

Besonders interessiert mich die Stelle vom Punkt A

Bezug
                        
Bezug
ges Funktion durch Bedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:48 Fr 04.11.2016
Autor: abakus


> Danke für die Antwort!
>  
> Dann eine andere Idee:
>  
> Kann ich eine Funktion dritten Grades aus folgenden
> Informationen herleiten?
>  
> f(0)=k-a
>  f'(0)=0
>  Der Wendepunkt ist vom Nullpunkt k entfernt und liegt im
> ersten Quadrant.
>  f'''(x)>0
>  Zwischen Wendepunkt und Hochpunkt liegt der Punkt A im
> ersten Quadrant mit dem Wert k und der Steigung s.
>  
> Besonders interessiert mich die Stelle vom Punkt A  

Bitte werde konkreter.
Klar ist:
1) f(0)=k-a
2) f'(0)=0
Unklar ist:
">  Der Wendepunkt ist vom Nullpunkt k entfernt
Ist damit der tatsächliche Abstand (Länge einer "schrägen" Strecke) gemeint? Und ist der "Nullpunkt" eine Umschreibung für "Koordinatenursprung"?

>  Zwischen Wendepunkt und Hochpunkt liegt der Punkt A im
> ersten Quadrant mit dem Wert k und der Steigung s.

Ist mit "Wert k" die y-Koordinate des Punktes A gemeint?

Unabhängig von deinen Antworten:
Wegen den ersten zwei Bedingungen und der Forderung "Funktion dritten Grades" hat deine Funktion die Form
f(x)=const*(x-(k-a))²*(x-andereNullstelle).
(Ich habe jetzt keine Muße, den vorherigen Thread noch mal durchzuarbeiten, welche Buchstaben schon als Bezeichner für Variablen und Parameter verwendet wurden. Um Dopplungen zu vermeiden, habe ich hier "const" und "andereNullstelle" verwendet. Du kannst dafür unverfängliche Buchstaben einsetzen.
Multipliziere das mal aus und bestimme mit diesem Ansatz die Wendestelle. Vielleicht kommst du damit weiter.

Bezug
                                
Bezug
ges Funktion durch Bedingungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:55 Fr 04.11.2016
Autor: RobKobin

>Ist damit der tatsächliche Abstand (Länge einer "schrägen" Strecke) gemeint? Und ist der "Nullpunkt" eine Umschreibung für "Koordinatenursprung"?
ja.

>Ist mit "Wert k" die y-Koordinate des Punktes A gemeint?
ja.

>welche Buchstaben schon als Bezeichner für Variablen und Parameter verwendet wurden
Die sind unabhängig vom Anfangsposting.

Das hat mir schon weitergeholfen, danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]