matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehregeordnete Menge ohne Supremum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Mengenlehre" - geordnete Menge ohne Supremum
geordnete Menge ohne Supremum < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geordnete Menge ohne Supremum: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:31 Di 02.11.2010
Autor: wulfstone

Aufgabe
Geben Sie eine geordnete Menge (M) und eine Teilmenge S von M an, so dass Ma(S)= gilt und S kein Supremum besitzt.


Hi erstmal!
Ich hänge irgendwie fest.

Als Beispiel wurde in der Vorlesung [mm] (\IN, \le) [/mm] gegeben.
Sei G Menge der gerade nat. Zahlen.
Dann gilt in [mm] (\IN, \le): [/mm]
     Ma(G) = [mm] \emptyset [/mm]
Also hat G kein Supremum in [mm] (\IN, \le). [/mm]

Also mit Ma(...) ist die Menge der Majoranten(obere Schranken) gemeint.

Meinen Folgerungen nach müssen in M Elemente liegen, die in der Majorantenmenge sind, aber S die Teilmenge darf kein Supremum haben,
also keine obere Schranke.

Ich folgere weiter, dass das Supremum das kleinste Element der Majoranten sein soll.

Aber egal wie rum jongliere. Ich finde einfach nix.
Ein Tipp oder noch besser eine Quasilösung wäre sehr hilfreich.

Danke

        
Bezug
geordnete Menge ohne Supremum: weiterer idee dazu
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Do 04.11.2010
Autor: wulfstone

Nur falls sich jemand interessiert.

Ich habe [mm] (\IQ,\le) [/mm] als Ordnung gewaehlt und als Teilmenge S (1,2,3,4) im offenen Intervall. So besitzt meiner Meinung nach S keine obere Schranke, da man 3,999... beliebig weit fassen kann, aber Ma(S) ist nicht leer, denn alle rationalen Zahlen x [mm] \in \IQ [/mm]  mit  4 [mm] \le [/mm] x sind Majoranten davon.

Bezug
                
Bezug
geordnete Menge ohne Supremum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Do 04.11.2010
Autor: angela.h.b.


> Nur falls sich jemand interessiert.
>  
> Ich habe [mm](\IQ,\le)[/mm] als Ordnung gewaehlt und als Teilmenge S
> (1,2,3,4) im offenen Intervall.

Hallo,

ich verstehe die Menge nicht.
[mm] S=\{1,2,3,4\} [/mm] oder [mm] S=(1,2)\cup(2,3)\cup(3,4) [/mm] oder was?


> So besitzt meiner Meinung
> nach S keine obere Schranke, da man 3,999... beliebig weit
> fassen kann,

Meine beiden Mengen da oben haben eine obere Schranke. Z.B. die 4711.

Sie haben auch beide ein Supremum, nämlich die 4.
[mm] (1,2)\cup(2,3)\cup(3,4) [/mm] hat allerdings kein Maximum.

> aber Ma(S) ist nicht leer, denn alle

> rationalen Zahlen x [mm]\in \IQ[/mm]  mit  4 [mm]\le[/mm] x sind Majoranten
> davon.

Ja.
Aber sollte M(S) nicht eigentlich leer sein lt. Aufgabenstellung?

Gruß v. Angela


Bezug
        
Bezug
geordnete Menge ohne Supremum: Antwort
Status: (Antwort) fertig Status 
Datum: 14:42 Do 04.11.2010
Autor: angela.h.b.


> Geben Sie eine geordnete Menge (M) und eine Teilmenge S von
> M an, so dass Ma(S)= gilt und S kein Supremum besitzt.

Hallo,

soll das heißen [mm] "Ma(S)=\emptyset"? [/mm]

> Als Beispiel wurde in der Vorlesung [mm](\IN, \le)[/mm] gegeben.
>  Sei G Menge der gerade nat. Zahlen.
>  Dann gilt in [mm](\IN, \le):[/mm]
>       Ma(G) = [mm]\emptyset[/mm]
>  Also hat G kein Supremum in [mm](\IN, \le).[/mm]
>  
> Also mit Ma(...) ist die Menge der Majoranten(obere
> Schranken) gemeint.

Aha.

>  
> Meinen Folgerungen nach müssen in M Elemente liegen, die
> in der Majorantenmenge sind,

???


> aber S die Teilmenge darf kein
> Supremum haben,
>  also keine obere Schranke.
>  
> Ich folgere weiter, dass das Supremum das kleinste Element
> der Majoranten sein soll.

So ist "Supremum" ja definiert.

>  
> Aber egal wie rum jongliere. Ich finde einfach nix.

Aber Du hast doch schon ein Beispiel.
Mit [mm] M=\IN [/mm] und S:=ungerade Zahlen funktioniert's doch genauso.

Gruß v. Angela


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]