matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikgeometrische Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - geometrische Verteilung
geometrische Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

geometrische Verteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:02 Do 09.11.2006
Autor: mathestudentin

Aufgabe
Sei X eine geometrisch verteilte Zufallsvariable mit Parameter [mm] p\in [/mm] (0,1),d.h. [mm] P(X=k)=(1-p)^k-1 [/mm] p, [mm] \forall [/mm] k=1,2,...

Bestimmen Sie den Erwartungswert und die Varianz von X.

Hallo zusammen,
ich hab irgendwie noch Probleme mit den Begriffen Erwartungswert und Varianz und komm somit auch mit der Aufgabe nicht so recht klar.ich hoffe einer von euch kann mir helfen wie ich hier vorgehen kann.danke schonmal für jeden Tipp.schönen tag noch

        
Bezug
geometrische Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Do 09.11.2006
Autor: Walde

Hi mathestudentin,

deine Fragen sind äusserst allgemeiner Natur, daher mein Tipp: informiere dich erstmal etwas selbst. Eine Suche in der Wikipedia oder hier im Forum wirkt manchmal Wunder:

[]Erwartungswert
[]Varianz
[]geom. Verteilung

L G walde

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]