matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)gemeinsame Verteilungsfunktion
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik (Anwendungen)" - gemeinsame Verteilungsfunktion
gemeinsame Verteilungsfunktion < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame Verteilungsfunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:46 Fr 30.09.2011
Autor: jolli1

Aufgabe
F(x,y) bezeichnet den Wert einer gemeinsamen Verteilungsfunktion zweier stetiger Zufallsvariablen X und Y am Punkt (x,y). Geben Sie [mm] P(a\leX\leb, c\leX\led) [/mm] als Funktion von F(a,c) , F(a,d), F(b,c) und F(b,d) an.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo,

ich weiß nicht genau wie ich das notieren soll.

Ich dachte für F(a,c) an sowas hier:
[mm] \integral_{-\infty}^{a}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx} [/mm] f(x,y) dx dx

Und für F(b,c)
[mm] \integral_{a}^{b}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx} [/mm]

Wäre lieb, wenn ihr das korrigieren könntet

Liebe Grüße

        
Bezug
gemeinsame Verteilungsfunktion: Tipp: zeichnen !
Status: (Antwort) fertig Status 
Datum: 15:12 Fr 30.09.2011
Autor: Al-Chwarizmi


> F(x,y) bezeichnet den Wert einer gemeinsamen
> Verteilungsfunktion zweier stetiger Zufallsvariablen X und
> Y am Punkt (x,y). Geben Sie [mm]P(a\leX\leb, c\leX\led)[/mm] als
> Funktion von F(a,c) , F(a,d), F(b,c) und F(b,d) an.

Hallo jolli1,

zuerst musste ich mal den Aufgabentext richtig lesbar machen:

Aufgabe
F(x,y) bezeichnet den Wert einer gemeinsamen
Verteilungsfunktion zweier stetiger Zufallsvariablen X und
Y am Punkt (x,y). Geben Sie [mm]P(a\le X\le b\ ,\ c\le X\le d)[/mm] als
Funktion von F(a,c) , F(a,d), F(b,c) und F(b,d) an.



  

> Hallo,
>  
> ich weiß nicht genau wie ich das notieren soll.
>  
> Ich dachte für F(a,c) an sowas hier:
>  [mm]\integral_{-\infty}^{a}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx}[/mm]
> f(x,y) dx dx
>  
> Und für F(b,c)
>  [mm]\integral_{a}^{b}{f(x) dx}\integral_{-\infty}^{c}{f(x) dx}[/mm]


Da ist bei beiden Beispielen die Zufallsvariable Y ganz
außen vor geblieben. Das kann nicht sein !

Für F(a,c) kann man schreiben (falls es zur Verteilungsfunktion
F eine zugehörige Dichtefunktion f gibt) :

     $\ F(a,c)\ =\ [mm] \integral_{x=-\infty}^{a}\left(\ \integral_{y=-\infty}^{c}f(x,y)\,dy\right)\, [/mm] dx$

Zur Lösung der Aufgabe ist es sehr hilfreich, sich die Inte-
grationsgebiete für alle vorkommenden Doppelintegrale
graphisch klar zu machen !

LG   Al-Chw.


Bezug
                
Bezug
gemeinsame Verteilungsfunktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:18 Fr 30.09.2011
Autor: jolli1

vielen lieben dank,

jetzt kapier ichs. dankeschön !!!!:)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]