matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikgemeinsame Verteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - gemeinsame Verteilung
gemeinsame Verteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

gemeinsame Verteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:38 Fr 15.02.2008
Autor: chris2408

Aufgabe
Es werden die beiden Zufallsvariablen X1:"Note in der mündlichen Prüfung" und X2:"Note in der schriftlichen Prüfung" betrachtet. Die gemeinsame Wahrscheinlichkeitsmassenfunktion von X1 und X2 sieht folgendermaßen aus:

siehe Anhang

1.) Bestimmen Sie die Wahrscheinlichkeitsmassenfunktion der mündlichen Note.

2.) Welche Note kann ein zufällig ausgewählter Student in der mündlichen Prüfung erwarten?

[Dateianhang nicht öffentlich]

Hallo,

die erste Teilaufgabe habe ich soweit gelöst (s.Anhang), müsste eigentlich stimmen.
Nur bei der zweiten komme ich nicht weiter. Ich habe folgende Formel gefunden, weiß aber nicht, wie ich das ganze jetzt umsetzen muss.

[Dateianhang nicht öffentlich]

Über Hilfe würde ich mich freuen.

Danke
Christopher

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
gemeinsame Verteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:55 Fr 15.02.2008
Autor: abakus


> Es werden die beiden Zufallsvariablen X1:"Note in der
> mündlichen Prüfung" und X2:"Note in der schriftlichen
> Prüfung" betrachtet. Die gemeinsame
> Wahrscheinlichkeitsmassenfunktion von X1 und X2 sieht
> folgendermaßen aus:
>  
> siehe Anhang
>  
> 1.) Bestimmen Sie die Wahrscheinlichkeitsmassenfunktion der
> mündlichen Note.
>  
> 2.) Welche Note kann ein zufällig ausgewählter Student in
> der mündlichen Prüfung erwarten?
>  [Dateianhang nicht öffentlich]

Hallo Christopher,
wie du selbst herausgefunden hast, beträgt die Wahrscheinlichkeit für eine mündliche 1, 2 bzw. 3 gerade
0,35; 0,40 bzw. 0,25 (Summe der ersten, zweiten bzw. dritten Tabellenzeile.)

Der Erwartungswert ist damit einfach 0,35*1 + 0,40*2 + 0,25*3.

Viele Grüße
Abakus

>  
> Hallo,
>  
> die erste Teilaufgabe habe ich soweit gelöst (s.Anhang),
> müsste eigentlich stimmen.
> Nur bei der zweiten komme ich nicht weiter. Ich habe
> folgende Formel gefunden, weiß aber nicht, wie ich das
> ganze jetzt umsetzen muss.
>  
> [Dateianhang nicht öffentlich]
>
> Über Hilfe würde ich mich freuen.
>  
> Danke
>  Christopher


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]