matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebrafreie abelsche gruppen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - freie abelsche gruppen
freie abelsche gruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

freie abelsche gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:00 Mo 17.03.2008
Autor: bene75

Guten morgen

Ich kämpfe momentan mit den freien abelschen Gruppen und bin extrem verwirrt:

Habe in einer Zusammenfassung eines Studenten gelesen, dass freie abelsche Gruppen einelementig erzeugt, also zyklisch sind. Für mich ist das nicht so?!

Weiters zeigt selbiger, dass [mm] (\IQ\setminus\{0\},*) [/mm] frei abelsch ist, indem er
eine Primfaktorenzerlegung
[mm] p_{1}^{l_{1}}*\ldots*p_{n}^{l_{n}}=\bruch{p}{q}=1 [/mm] benutzt.
Warum =1?

Wäre toll, wenn mir das jemand klar machen könnte (muss für einige Gruppen wie [mm] (\IQ,+), (\IR,+),... [/mm] zeigen, ob frei abelsch oder nicht)
Grüße
bene

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
freie abelsche gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Mo 17.03.2008
Autor: andreas

hi

> Ich kämpfe momentan mit den freien abelschen Gruppen und
> bin extrem verwirrt:
>  
> Habe in einer Zusammenfassung eines Studenten gelesen, dass
> freie abelsche Gruppen einelementig erzeugt, also zyklisch
> sind. Für mich ist das nicht so?!

das ist auch nicht so. zyklische freie abelsche gruppen sind immer isomorph zu [mm] $\mathbb{Z}$, [/mm] aber es gibt durchaus auch andere freie abelsche gruppen auf $0, 2, 3, ...$ erzeugern oder gar auf unendlich vielen erzeugern, wie du unten siehst.

>  
> Weiters zeigt selbiger, dass [mm](\IQ\setminus\{0\},*)[/mm] frei
> abelsch ist, indem er
>  eine Primfaktorenzerlegung
>  [mm]p_{1}^{l_{1}}*\ldots*p_{n}^{l_{n}}=\bruch{p}{q}=1[/mm]
> benutzt.
>  Warum =1?

das weiß ich auch nicht (vielleicht hat er einen homomorphismus definiert und wollte später zeigen, dass der kern trivial ist und hat hier schonmal das neutrale element notiert?). aber [mm] $(\mathbb{Q} \setminus \{0\}, \cdot)$ [/mm] ist gar nicht frei abelsch, sondern

[m] \mathbb{Q} \setminus \{ 0 \} \cong \mathbb{Z} / 2\mathbb{Z} \oplus \bigoplus_{p \in \mathbb{P}} \mathbb{Z} [/m]


(das vorzeichen muss ja auch irgendwo hin). aber um zu zeigen, dass [mm] $\mathbb{Q}_{> 0} [/mm] = [mm] \{q \in \mathbb{Q} : q > 0\}$ [/mm] frei abelsch ist, ist das genau der richtige weg über die (eindeutige) primfaktorzerlegung von zähler und nenner zu gehen.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]