matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenfolgen & reihen-rekursive def.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - folgen & reihen-rekursive def.
folgen & reihen-rekursive def. < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

folgen & reihen-rekursive def.: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 18:12 Di 12.04.2011
Autor: m4rio

Aufgabe
Folgeglieder berechnen:

[mm] \((a_{n}) \(n \in \IN [/mm]  mit [mm] \(a_{n}:=-\bruch{a_{n-1}}{n} [/mm]



Hallo,


die Folge lautet (laut lösungsbuch) :

[mm] 5,-5,\bruch{5}{2},\bruch{-5}{6}, \bruch{5}{24}.. [/mm]

leider habe ich alles versucht, komme aber nciht auf diese ergebnisse (habe allerdings die erste vorlesung verpasst & habe 0 Ahnung von dem thema)..

wäre nett, wenn mir jmd zeigen könnte,wie ich auf diese Ergebnissse komme..

Danke

        
Bezug
folgen & reihen-rekursive def.: Aufgabenstellung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Di 12.04.2011
Autor: Loddar

Hallo m4rio!


Zunächst einmal sollten wir hier die Aufgabenstellung entwirren. [konfus]

Was sollen diese [mm] $\IZ$ [/mm] dazwischen? Und wie lautet das Startglied [mm] $a_1$ [/mm] der Folge (dieses muss bei einer rekursiven Definition mit angegeben sein)?


Gruß
Loddar


Bezug
                
Bezug
folgen & reihen-rekursive def.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:20 Di 12.04.2011
Autor: m4rio

Habe die Aufgabenstellung korrigiert, war leider mehr ihm speicher als geplant..

Das Startglied, ich denke, dass es das ist, ist [mm] \(a_{0}=5 [/mm]

Bezug
                        
Bezug
folgen & reihen-rekursive def.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Di 12.04.2011
Autor: schachuzipus

Hallo m4rio,

> Habe die Aufgabenstellung korrigiert, war leider mehr ihm
> speicher als geplant..
>
> Das Startglied, ich denke, dass es das ist, ist [mm]\(a_{0}=5[/mm]

Was heißt denn, dass du "alles versucht hast" ...

Das ist so nichtssagend wie nur irgendetwas.

Zeige konkrete Versuche, das ist ja kein Prosaforum ...

Setze ein in die Rekursionsvorschrift [mm]a_n=-\frac{a_{n-1}}{n}[/mm]:

[mm]a_1=-\frac{a_0}{1}=-\frac{5}{1}=-5[/mm]

Weiter [mm]a_2=-\frac{a_1}{2}=-\frac{-5}{2}=\frac{5}{2}[/mm]

Und weiter: [mm]a_3=-\frac{a_2}{3}=-\frac{\frac{5}{2}}{3}=-\frac{5}{6}[/mm]

Usw. ...

Das ist doch einfachste Schulbruchrechnung, dazu brauchst du doch keine Vorlesung.

Rechne mal die nächsten 3 Glieder aus ...


Gruß

schachuzipus


Bezug
                                
Bezug
folgen & reihen-rekursive def.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:38 Di 12.04.2011
Autor: m4rio

ok, immer locker bleiben ...
habe nicht sofort gesehen, wie ich auf den Zähler komme, habe versucht [mm] \(5 [/mm] einzusetzen und bei [mm] \(a_{0} [/mm] angefangen ...also [mm] \(a_{0-1} [/mm]  ...

trotzdem vielen danke für die Antwort, habe jetzt die Vorgehensweise begriffen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]