matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeflächenkleinstes Dreieck
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Extremwertprobleme" - flächenkleinstes Dreieck
flächenkleinstes Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

flächenkleinstes Dreieck: Hilfe zum Lösungsansatz
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 24.02.2011
Autor: e_v_a_

Aufgabe
Einem Rechteck mit den Seitenlängen a und b soll das flächenkleinste gleichschenkelige Dreieck umgeschrieben werden. Berechne die Seitenlängen des Dreiecks.

Meine Frage wäre eigentlich nur, wie ich die Rechnung ansetzen soll, weil ich weiß ansich schon wie man eine Extremwertaufgabe löst, habe bis jetzt aber nur nach den flächengrößten Dreiecken etc gesucht...

Meine Idee wäre die Rechnung gleich wie sonst anzusetzen, also mit Haupt- und Nebenbedingung. Nur weiß ich da eben nicht was diese Bedingungen wären ...

würde mich sehr über Hilfe freuen.
glg Eva

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt http://www.matheboard.de/thread.php?threadid=447200 gestellt.

        
Bezug
flächenkleinstes Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 17:26 Do 24.02.2011
Autor: abakus


> Einem Rechteck mit den Seitenlängen a und b soll das
> flächenkleinste gleichschenkelige Dreieck umgeschrieben
> werden. Berechne die Seitenlängen des Dreiecks.
>  Meine Frage wäre eigentlich nur, wie ich die Rechnung
> ansetzen soll, weil ich weiß ansich schon wie man eine
> Extremwertaufgabe löst, habe bis jetzt aber nur nach den
> flächengrößten Dreiecken etc gesucht...
>  
> Meine Idee wäre die Rechnung gleich wie sonst anzusetzen,
> also mit Haupt- und Nebenbedingung. Nur weiß ich da eben
> nicht was diese Bedingungen wären ...

Hallo,
das lässt sich so ohne weiteres nicht sagen. Versuche zunächst den Ansatz, die Basis des gleichschenkligen Dreiecks auf die Seite a zu legen (sei a kleiner als b). Löse die Extremwertaufgabe.
Schau was sich ändert, wenn du die Basis auf b legst.
Schau, ob die Fläche kleiner werden kann, wenn du die Basis nicht auf, sondern nur parallel zu einer Seite legst.
Letztendlich: Schau, ob bei einer "schrägen" Lage nicht eine noch kleinere Fläche herauskommen kann.
Gruß Abakus

>  
> würde mich sehr über Hilfe freuen.
>  glg Eva
>  
> Ich habe diese Frage auch in folgenden Foren auf anderen
> Internetseiten gestellt
> http://www.matheboard.de/thread.php?threadid=447200
> gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]