matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegralrechnungflächenberechnung mit a
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Integralrechnung" - flächenberechnung mit a
flächenberechnung mit a < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

flächenberechnung mit a: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mo 05.06.2006
Autor: tAtey

Aufgabe
geg.: f(x) = x² + a und g(x)=  [mm] \bruch{1}{a} [/mm] * x² + a²
Definitionsmenge : Da = Intervall 0;1 ohne 0 und 1.

Berechne Flächeninhalt des von den Graphen Gf und Gg eingeschlossenen Flächenstücks in Abhängigkeit von a.


Was bedeutet das mit der Definitionsmenge, also dem Intervall?! Heißt das ich muss die Graphen nur in dem Intervall anschauen?
Oder einfach nur, dass a zwischen 1 und 0 liegt, aber weder 1 noch 0 ist?!

Was für ein Integral muss ich denn bilden?
Von den Schnittpunkten, oder?
Wenn ich die Schnittpunkte errechnen will, muss ich die beiden Funktionen ja gleich 0 setzen. Bekomm das irgendwie nicht aufgelöst.

Kann mir da irgendjemand helfen?
Wäre lieb.

        
Bezug
flächenberechnung mit a: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 Mo 05.06.2006
Autor: Seppel

Hallo tAtey!

Was bedeutet das mit der Definitionsmenge, also dem Intervall?! Heißt das ich muss die Graphen nur in dem Intervall anschauen?
Oder einfach nur, dass a zwischen 1 und 0 liegt, aber weder 1 noch 0 ist?!


Es bedeutet, dass a zwischen 0 und 1 liegt, ohne den Wert 0 und 1 anzunehmen - in diesem Punkt war also deine letzte Vermutung, die richtige.

Was für ein Integral muss ich denn bilden?
Von den Schnittpunkten, oder?
Wenn ich die Schnittpunkte errechnen will, muss ich die beiden Funktionen ja gleich 0 setzen.


Du musst nicht die beiden Funktionen gleich 0 setzen, sondern die Funktionen gleichsetzen - so : [mm] $f_a(x)=g_a(x)$. [/mm]

Bekomm das irgendwie nicht aufgelöst.

Na dann will ich dir mal helfen. :-)

Also wir setzen die beiden Funktionen gleich.

[mm] $f_a(x)=g_a(x)$ [/mm]
[mm] $\gdw x^2+a=\frac{1}{a}x^2+a^2$ [/mm]
[mm] $x^2-\frac{1}{a}x^2+a-a^2=0$ [/mm]
[mm] $\left(1-\frac{1}{a}\right)x^2+a-a^2=0$ [/mm]

wir teilen durch [mm] $\left(1-\frac{1}{a}\right)$ [/mm]

Somit erhalten wir

[mm] $x^2+\frac{a-a^2}{1-\frac{1}{a}}=0$ [/mm]
[mm] $x^2+\frac{a-a^2}{\frac{a-1}{a}}=0$ [/mm]
[mm] $x^2+\frac{(a-a^2)*a}{a-1}=0$ [/mm]
[mm] $x^2+\frac{a^2-a^3}{a-1}=0$ [/mm]
[mm] $x^2+\frac{(a-1)*(-a^2)}{(a-1)}=0$ [/mm]

Nun kürzen wir (a-1) und erhalten

[mm] $x^2=a^2$ [/mm]

Daraus ziehen wir die Wurzel und erhalten für als Ergebnisse für x:

[mm] $x=(-a)\vee [/mm] x=a$

Ich hoffe, das war verständlich genug.

Noch als Anmerkung:
Bei Funktionen mit Parametern (hier a) schreibt man die Funktionen immer mit dem Parameter im Index, da sie ja auch (neben x) von diesem abhängt.
Also nicht f(x) schreiben, sondern [mm] $f_a(x)$. [/mm]

Liebe Grüße
Seppel

Bezug
                
Bezug
flächenberechnung mit a: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:22 Mo 05.06.2006
Autor: tAtey

ich danke dir, habs verstanden :)
hab immer so Probleme mit dem auflösen nach x.
komm nie auf die Idee auszuklammern oder durch irgendwas zu teilen ^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]