matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionalanalysisf holomoprh -> injektiv
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Funktionalanalysis" - f holomoprh -> injektiv
f holomoprh -> injektiv < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f holomoprh -> injektiv: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:46 Fr 19.05.2017
Autor: Schobbi

Aufgabe
Sei G ein konvexes Gebiet und [mm] f:G\to\IC [/mm] holomorph (und f' stetig) mit |f'(z)-1|<1 für alle [mm] z\in [/mm] G. Zeige, dass f injektiv ist.

Guten Morgen, ich bin mir nicht sicher ob ich die obige Aufgabe so lösen kann. Es wäre nett wenn Ihr mir ein paar Rückmeldungen, Tipps oder Korrekturen geben könntet. DANKE schonmal vorab!

Meine Idee:
G ist ein konvexes Gebiet, d.h. mit [mm] a,b\inG [/mm] liegt auch die Spur der Verbindungsstrecke [a,b] in G.

Angenommen, f sei nicht injektiv, dann gibt es zwei Punkte a und b mit f(a)=f(b). Da G aber konvex liegt die Verbindungsstrecke [a,b] in G.

Definiere nun g(t):=(1-t)a+tb. Das Bild von g unter [0,1] parametrisiert [a,b].

Betrachten wir nun h(t):=Re f(g(t)):
h ist diff'bar, da g holomoph ist und f holomorph nach Voraussetzung. Somit ist auch [mm] f\circ [/mm] g holomorph und somit der Realteil von h harmonisch, also vorallem reell diff'bar Weiter gilt: h(0)=h(1).

Jezt muss ich doch eigentlich nur noch zeigen, dass [mm] h'(t)\not=0 [/mm] ist denn dann könnte ich meine Annahme mit dem Satz von Rolle zum Widerspruch führen und hab gezeig, dass f injektiv sein muss, oder??

Für Tipps und Lösungshinweise an dieser Stelle wäre ich sehr dankbar.
Viele Grüße

Schobbi

        
Bezug
f holomoprh -> injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:03 Fr 19.05.2017
Autor: fred97


> Sei G ein konvexes Gebiet und [mm]f:G\to\IC[/mm] holomorph (und f'
> stetig) mit |f'(z)-1|<1 für alle [mm]z\in[/mm] G. Zeige, dass f
> injektiv ist.
>  Guten Morgen, ich bin mir nicht sicher ob ich die obige
> Aufgabe so lösen kann. Es wäre nett wenn Ihr mir ein paar
> Rückmeldungen, Tipps oder Korrekturen geben könntet.
> DANKE schonmal vorab!
>  
> Meine Idee:
>  G ist ein konvexes Gebiet, d.h. mit [mm]a,b\inG[/mm] liegt auch die
> Spur der Verbindungsstrecke [a,b] in G.
>  
> Angenommen, f sei nicht injektiv, dann gibt es zwei Punkte
> a und b mit f(a)=f(b). Da G aber konvex liegt die
> Verbindungsstrecke [a,b] in G.
>  
> Definiere nun g(t):=(1-t)a+tb. Das Bild von g unter [0,1]
> parametrisiert [a,b].
>  
> Betrachten wir nun h(t):=Re f(g(t)):
>  h ist diff'bar, da g holomoph ist und f holomorph nach
> Voraussetzung. Somit ist auch [mm]f\circ[/mm] g holomorph und somit
> der Realteil von h harmonisch, also vorallem reell diff'bar
> Weiter gilt: h(0)=h(1).
>  
> Jezt muss ich doch eigentlich nur noch zeigen, dass
> [mm]h'(t)\not=0[/mm] ist denn dann könnte ich meine Annahme mit dem
> Satz von Rolle zum Widerspruch führen und hab gezeig, dass
> f injektiv sein muss, oder??





>  
> Für Tipps und Lösungshinweise an dieser Stelle wäre ich
> sehr dankbar.
>  Viele Grüße
>
> Schobbi


Ich würde das so machen:

Zeige, dass $ Re(f'(z))>0$ ist für jedes $ z [mm] \in [/mm] G$:

für $z [mm] \in [/mm] G$ sei $u(z):=Re(f'(z))$ .

Wegen |f'(z)-1|<1 für alle $ [mm] z\in [/mm] $ G haben wir

$|u(z)-1| [mm] \le [/mm] |f'(z)-1|<1$. Es folgt $u(z)-1>-1$, also $u(z)>0$.

Nun seien $a,b [mm] \in [/mm] G$, a [mm] \ne [/mm] b  und g(t):=(1-t)a+tb für 0 [mm] \le [/mm] t [mm] \le [/mm] 1.

Dann:

[mm] $f(b)-f(a)=\int_{g}f'(z) dz=\int_0^1 f'(g(t))(b-a)dt=(b-a)\int_0^1Re(f'(g(t))dt+i(b-a)\int_0^1Im(f'(g(t))dt$ [/mm]

Da der erste Summand rechts [mm] \ne [/mm] 0 ist, ist f(b) [mm] \ne [/mm] f(a).


Bezug
        
Bezug
f holomoprh -> injektiv: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Fr 19.05.2017
Autor: Kalkutta

Das ist etwas umständlich.

Einfacher ist: $|b-a| = [mm] \left|\int_{[a,b]} (1-f'(z))dz\right| \leq [/mm] ...$

Bezug
                
Bezug
f holomoprh -> injektiv: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:39 Fr 19.05.2017
Autor: fred97


> Das ist etwas umständlich.
>  
> Einfacher ist: [mm]|b-a| = \left|\int_{[a,b]} (1-f'(z))dz\right| \leq ...[/mm]

O.K. , das ist einfacher. Aber mein Beweis zeigt, dass allgemeiner gilt:

Satz: Sei G ein konvexes Gebiet und $ [mm] f:G\to\IC [/mm] $ holomorph mit Re(f(z))>0 für alle $ [mm] z\in [/mm] $ G. Dann ist f injektiv.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]