f(1/n) hol. in Umgebung von 0? < komplex < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | 1) In welchen Fällen existiert eine in einer offenen Umgebung von 0 definierte holomorphe Funktion f, so dass für ein [mm] n_{0} \in \IN [/mm] gilt:
(i) [mm] f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ 1, & n=2k \in \IN \end{cases} [/mm] für n [mm] \ge n_{0}
[/mm]
(ii) [mm] f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases} [/mm] für n [mm] \ge n_{0}
[/mm]
(iii) [mm] f(\bruch{1}{n})=\begin{cases} \bruch{1}{n+1}, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases} [/mm] für n [mm] \ge n_{0}
[/mm]
(iv) [mm] f(\bruch{1}{n})=\bruch{n}{n+1} [/mm] für n [mm] \ge n_{0}
[/mm]
Wenn f existiert, dann geben Sie f an. Sonst begründen Sie, warum dieses f nicht existiert. |
Aufgabe 2 | 2) Es sei nun f: [mm] \IC \to \IC [/mm] eine holomorphe Funktion, für die [mm] f(\bruch{1}{n})=(\bruch{1}{n^{2}}+\bruch{1}{n}-2)*e^{-\bruch{1}{n}} [/mm] für alle n [mm] \in \IN. [/mm] Bestimmen Sie alle Nullstellen von f. |
Guten Abend zusammen,
ich bräuchte bei obiger Aufgabe eure Hilfe, da ich nicht genau weiß, wie ich vorgehen muss. Es wäre daher sehr nett, wenn ihr mir unter die Arme greifen könntet.
Also bei 1 habe ich mir folgende Dinge überlegt:
(i) Hier habe ich mit 0 und 1 praktisch zwei Häufungspunkte, einmal ist f(z)=0*z und einem f(z)=n*z, nur kann man f in einer offenen Umgebung liegen wenn ich zwei Häufungspunkte habe? Meine Umgebung wäre ja dann doch eher abgeschlossen als offen oder? Existiert dann mein f deswegen nicht?
(ii) Hier hätte ich einmal f(z)=0*z und f(z)=z. Hier würde ich sagen, dass mein f existiert, da 0 in meiner Umgebung enthalten ist und mit ich mit [mm] \bruch{1}{n} [/mm] eine offene Kreisscheibe erzeugen kann; ist das soweit richtig?
(iii) Hier hätte ich einmal [mm] f(z)=\bruch{1}{z^{-1}+1} [/mm] und f(z)=z. Hier würde ich sagen, dass mein f nicht in der Umgebung existiert, da die 0 für [mm] f(\bruch{1}{n}) [/mm] nicht exisitiert?
(iv) Hier ist [mm] f(z)=\bruch{n}{z^{-1}+1}. [/mm] Hier würde ich sagen, dass mein f in der Umgebung existiert, da ich eine offene Kreisscheibe erzeugen kann und die 0 enthalten ist?
Sind meine Argumente richtig und plausibel, wären meine fs richtig?
Zu 2)
Also [mm] e^{-\bruch{1}{n}} [/mm] wird nicht 0, also betrachte nur noch [mm] \bruch{1}{n^{2}}+\bruch{1}{n}-2=0; [/mm] kommt heraus: n=1
in f(z) umgewandelt: [mm] z^{2}+z-2=0 [/mm] --> z=1 oder z=-2, welche Nullstellen soll ich da nehmen? Diese oder die von [mm] \bruch{1}{n^{2}}+\bruch{1}{n}-2?
[/mm]
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:54 Di 21.06.2011 | Autor: | fred97 |
> 1) In welchen Fällen existiert eine in einer offenen
> Umgebung von 0 definierte holomorphe Funktion f, so dass
> für ein [mm]n_{0} \in \IN[/mm] gilt:
> (i) [mm]f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ 1, & n=2k \in \IN \end{cases}[/mm]
> für n [mm]\ge n_{0}[/mm]
> (ii) [mm]f(\bruch{1}{n})=\begin{cases} 0, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases}[/mm]
> für n [mm]\ge n_{0}[/mm]
> (iii) [mm]f(\bruch{1}{n})=\begin{cases} \bruch{1}{n+1}, & n=2k+1 \in \IN \\ \bruch{1}{n}, & n=2k \in \IN \end{cases}[/mm]
> für n [mm]\ge n_{0}[/mm]
> (iv) [mm]f(\bruch{1}{n})=\bruch{n}{n+1}[/mm] für
> n [mm]\ge n_{0}[/mm]
> Wenn f existiert, dann geben Sie f an. Sonst
> begründen Sie, warum dieses f nicht existiert.
>
> 2) Es sei nun f: [mm]\IC \to \IC[/mm] eine holomorphe Funktion,
> für die
> [mm]f(\bruch{1}{n})=(\bruch{1}{n^{2}}+\bruch{1}{n}-2)*e^{-\bruch{1}{n}}[/mm]
> für alle n [mm]\in \IN.[/mm] Bestimmen Sie alle Nullstellen von f.
>
> Guten Abend zusammen,
>
> ich bräuchte bei obiger Aufgabe eure Hilfe, da ich nicht
> genau weiß, wie ich vorgehen muss. Es wäre daher sehr
> nett, wenn ihr mir unter die Arme greifen könntet.
>
> Also bei 1 habe ich mir folgende Dinge überlegt:
>
> (i) Hier habe ich mit 0 und 1 praktisch zwei
> Häufungspunkte, einmal ist f(z)=0*z und einem f(z)=n*z,
> nur kann man f in einer offenen Umgebung liegen wenn ich
> zwei Häufungspunkte habe? Meine Umgebung wäre ja dann
> doch eher abgeschlossen als offen oder? Existiert dann mein
> f deswegen nicht?
>
> (ii) Hier hätte ich einmal f(z)=0*z und f(z)=z. Hier
> würde ich sagen, dass mein f existiert, da 0 in meiner
> Umgebung enthalten ist und mit ich mit [mm]\bruch{1}{n}[/mm] eine
> offene Kreisscheibe erzeugen kann; ist das soweit richtig?
>
> (iii) Hier hätte ich einmal [mm]f(z)=\bruch{1}{z^{-1}+1}[/mm] und
> f(z)=z. Hier würde ich sagen, dass mein f nicht in der
> Umgebung existiert, da die 0 für [mm]f(\bruch{1}{n})[/mm] nicht
> exisitiert?
>
> (iv) Hier ist [mm]f(z)=\bruch{n}{z^{-1}+1}.[/mm] Hier würde ich
> sagen, dass mein f in der Umgebung existiert, da ich eine
> offene Kreisscheibe erzeugen kann und die 0 enthalten ist?
>
> Sind meine Argumente richtig und plausibel, wären meine fs
> richtig?
Nein, nein, nein ! Da oben steht nur Unfug, den man gar nicht kommentieren kann und mag.
Zu i) Annahme: es gibt ein holomorphes f mit ...
f ist in z=0 stetig, also: f(1/n) [mm] \to [/mm] f(0) für n [mm] \to \infty. [/mm] Dann gilt auch:
1= f(1/(2k)) [mm] \to [/mm] f(0) und 0 =f(1/(2k+1)) [mm] \to [/mm] f(0)
Es folgt : f(0)=0 und f(0)=1, Widerspruch.
Zu ii) Annahme: es gibt ein holomorphes f mit ...
Dann ist 0 =f(1/(2k+1)) für jedes k. Der Identitätssatz liefert: f ist konstant = 0.
Aber: 1/(2k)= f(1/(2k)), Widerspruch.
Zu iii) Annahme: es gibt ein holomorphes f mit ...
Setze g(z)=f(z)-z. Dann ist g(1/(2k))=0. Der Identitätssatz liefert: g ist konstant = 0. Somit: f(z)=z
Aber: 1/(2k+2)= f(1/(2k+1))=1/(2k+1) Widersruch.
Zu iv) [mm] f(z):=\bruch{1}{1+z}
[/mm]
FRED
>
> Zu 2)
> Also [mm]e^{-\bruch{1}{n}}[/mm] wird nicht 0, also betrachte nur
> noch [mm]\bruch{1}{n^{2}}+\bruch{1}{n}-2=0;[/mm] kommt heraus: n=1
>
> in f(z) umgewandelt: [mm]z^{2}+z-2=0[/mm] --> z=1 oder z=-2, welche
> Nullstellen soll ich da nehmen? Diese oder die von
> [mm]\bruch{1}{n^{2}}+\bruch{1}{n}-2?[/mm]
|
|
|
|