matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebraf-invariant
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - f-invariant
f-invariant < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f-invariant: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:44 Do 10.05.2007
Autor: clover84

Aufgabe
geg: Sei V ein endlichdimensionaler VR, 0 [mm] \not= [/mm] f [mm] \in [/mm] End(V) mit [mm] f^n [/mm] = 0 für ein n [mm] \in \IN. [/mm] Sei W der Eigenraum zum Eigenvektor 0

z.z.: Ist V = U [mm] \oplus [/mm] W, so ist U nicht f-invariant.

Hallo zusammen,

ich weiß nicht so recht, ob mein Beweis richtig ist. Könnte sich das bitte jemand ansehen:

Beweis:

Annahme: f(U) [mm] \subseteq [/mm] U
Wähle ein x [mm] \in [/mm] U mit x [mm] \not= [/mm] 0. Ein solches x existiert, da U [mm] \oplus [/mm] W = V, aber V [mm] \not= [/mm] W.
Dann gilt f(x) [mm] \in [/mm] U und f(x) [mm] \not= [/mm] 0, da sonst x [mm] \in [/mm] W wäre. Induktiv folgt nun [mm] f^n(x) \in [/mm] U und [mm] f^n(x)\not= [/mm] 0 für alle n [mm] \in \IN, [/mm] d.h. [mm] f^n \not= [/mm] 0 für alle n [mm] \in \IN. [/mm]
Ein Widerspruch zur Voraussetzung.
Daraus folgt, dass U nicht f-invariant ist.

Stimmt das soweit? Ist der letzte Satz richtig??

Danke im voraus.

        
Bezug
f-invariant: Antwort
Status: (Antwort) fertig Status 
Datum: 14:23 Do 10.05.2007
Autor: angela.h.b.


> geg: Sei V ein endlichdimensionaler VR, 0 [mm]\not=[/mm] f [mm]\in[/mm]
> End(V) mit [mm]f^n[/mm] = 0 für ein n [mm]\in \IN.[/mm] Sei W der Eigenraum
> zum Eigenvektor 0
>  
> z.z.: Ist V = U [mm]\oplus[/mm] W, so ist U nicht f-invariant.
>  Hallo zusammen,
>  
> ich weiß nicht so recht, ob mein Beweis richtig ist. Könnte
> sich das bitte jemand ansehen:

Hallo,

ich finde Deinen Beweis richtig, manches würde ich ein wenig anders formulieren.

>  
> Beweis:
>  
> Annahme: f(U) [mm]\subseteq[/mm] U

Da V die direkte Summe von U und W ist, also insbes. [mm] U\not=0, [/mm] gibt es ein

>  Wähle ein x [mm]\in[/mm] U mit x [mm]\not=[/mm] 0. Ein solches x existiert,
> da U [mm]\oplus[/mm] W = V, aber V [mm]\not=[/mm] W.

>  Dann gilt f(x) [mm]\in[/mm] U und f(x) [mm]\not=[/mm] 0, da sonst x [mm]\in[/mm] W  
> wäre.

(denn die Summe ist direkt)

>  Induktiv folgt nun [mm]f^n(x) \in[/mm] U und [mm]f^n(x)\not=[/mm] 0 für
> alle n [mm]\in \IN,[/mm] d.h. [mm]f^n \not=[/mm] 0 für alle n [mm]\in \IN.[/mm],

(Diese Induktion würde ich sicherheitshalber ausführen.)

>  Ein

im

> Widerspruch zur Voraussetzung.

Also kann U nicht f-invariant sein.

>  Daraus folgt, dass U nicht f-invariant ist.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]