matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysisextremwerte mit nebenbedingung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - extremwerte mit nebenbedingung
extremwerte mit nebenbedingung < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwerte mit nebenbedingung: Frage
Status: (Frage) beantwortet Status 
Datum: 22:38 Do 07.04.2005
Autor: beni

Hallo,
ich hab da ein paar fragen zu einem bespiel, bei dem ich mich nicht so recht auskenne:
gegeben ist ein ellipsoid:
[mm] \bruch{x^{2}}{4}+\bruch{y^{2}}{9}+(z-1)^{2}=1 [/mm]
und ein kreis
[mm] x^{2}+y^{2}=1 [/mm]
gesucht werden die extremstellen des ellipsoids auf dem kreis, und zwar
a) mittels taylorpolynom bis inkl Grad 2 -> näherungslsg
b) grad z bestimmen für z [mm] \le1 [/mm] -> extremstellen bestimmen.


a) für das taylorpolynom erhalte ich
[mm] 2+\bruch{x^{2}}{8}+\bruch{y^{2}}{18} [/mm]
dh nach lagrange erhalte ich folgendes gleichungssystem:
[mm] -\bruch{x}{4}+2x\lambda=0 [/mm]
[mm] -\bruch{y}{9}+2y\lambda=0 [/mm]
[mm] x^{2}+y^{2}=1 [/mm]

stimmt es dass dann alle extremwerte dann unter den trivialen lösungen
[mm] (\pm1,0) [/mm] und [mm] (0,\pm1) [/mm] vorkommen?
wie kann man jetzt nachweisen, das das tatsächlich extermwerte sind?

b)recht wenig ahnung...
grad z hat ja was mit den lagrangen multiplikatoren zu tun; aber für den kreis müsste der gradient (0,0) ergeben, da der gradient die maximale steigung im funtionsgebirge anzeigt.

wie gehts jetzt weiter?

vielen dank

        
Bezug
extremwerte mit nebenbedingung: Aufgabe a)
Status: (Antwort) fertig Status 
Datum: 18:37 Fr 08.04.2005
Autor: MathePower

Hallo,

für Extrema mit Nebenbedingungen gelten folgende Bedingungsgleichungen:

[mm] \begin{gathered} (1)\;\varphi \left( {x,\;y} \right)\; = \;0 \hfill \\ (2)\;\frac{\delta } {{\delta x}}\;\left[ {f\left( {x,\;y} \right)\; + \;\lambda \;\varphi \left( {x,\;y} \right)} \right]\; = \;0 \hfill \\ (3)\;\frac{\delta } {{\delta y}}\;\left[ {f\left( {x,\;y} \right)\; + \;\lambda \;\varphi \left( {x,\;y} \right)} \right]\; = \;0 \hfill \\ \end{gathered} [/mm]

Wobei Gleichung (1) der Nebenbedingung entspricht.

Aus diesen Gleichungen bestimmen sich die drei Variablen x,y und [mm]\lambda[/mm].

> stimmt es dass dann alle extremwerte dann unter den
> trivialen lösungen
>  [mm](\pm1,0)[/mm] und [mm](0,\pm1)[/mm] vorkommen?
>  

Das habe ich auch herausbekommen.

>  wie kann man jetzt nachweisen, das das tatsächlich
> extermwerte sind?

Nun kann man über die Art des Extremums entscheiden:

[mm]\[ \Delta \; = \;\frac{{\delta ^{2} \left( {f\; + \;\lambda \;\varphi } \right)}} {{\delta x^{2} }}\;\left[ {\frac{{\delta \varphi }} {{\delta y}}} \right]^{2} \; - \;2\;\frac{{\partial ^{2} \left( {f\; + \;\lambda \;\varphi } \right)}} {{\partial x\;\partial y}}\;\frac{{\delta \varphi }} {{\delta x}}\;\frac{{\delta \varphi }} {{\delta y}}\; + \;\frac{{\delta ^{2} \left( {f\; + \;\lambda \;\varphi } \right)}} {{\delta y^2 }}\;\left[ {\frac{{\delta \varphi }} {{\delta x}}} \right]^{2} [/mm]


Für [mm]\Delta \; > \;0[/mm] ergibt sich ein Minimum.
Für [mm]\Delta \; < \;0[/mm] ergibt sich ein Maximum.

Gruß
MathePower

Bezug
        
Bezug
extremwerte mit nebenbedingung: Frage
Status: (Frage) beantwortet Status 
Datum: 19:20 Fr 08.04.2005
Autor: beni

idee zu b)
kann man das dann nicht "ganz normal" ausrechnen oder folgere ich da falsch schluss?

danke für a), mathepower

Bezug
                
Bezug
extremwerte mit nebenbedingung: Richtig
Status: (Antwort) fertig Status 
Datum: 20:16 Fr 08.04.2005
Autor: MathePower

Hallo,

da liegst Du vollkommen richtig.

Gruß
MathePower

Bezug
                        
Bezug
extremwerte mit nebenbedingung: danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:52 Fr 08.04.2005
Autor: beni

dann isses ja eh ganz einfach

danke!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]