matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeextremwertaufgaben
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - extremwertaufgaben
extremwertaufgaben < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertaufgaben: übungsaufgabe
Status: (Frage) beantwortet Status 
Datum: 23:42 Fr 22.02.2008
Autor: ange-yeah

Aufgabe
die katheten eines rechtwinkligen dreiecks sind 12cm und 8 cm lang, diesem dreieck ist ein möglichst großes rechteck einzubeschreiben,, von dem zwei seitzen auf den katheten des dreicks liegen.

wie berechne ich das , ich habe echt wenig ahnung im moment von mathe da ich im ausland war, deswegen auch noch die wediteren aufgaben von mir ;-) ich bräuchte jemanden der mir den lösungsvorgang so erklärt, dass ich es dadurch endlich verstehn kann, mein mathelehrer erklärt es mir nämlich nicht.
meine ansätze: EB: A (a,b) = a*b
ich glaube man muss das mit der geradengleichung weiterrechenen: mx+b stimmen die wenigen ansätze wenigstens?? vielen dank für eure hilfe

die ahnungslose


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
extremwertaufgaben: Antwort
Status: (Antwort) fertig Status 
Datum: 23:58 Fr 22.02.2008
Autor: leduart

Hallo
Dazu gehört erst mal ne Zeichnung und das Rechteck in das Dreieck eingezeichnet.
dann suchst du einen Zusammenhang zwischen den Seiten a und b, hier brauchst du keine Geradengleichung, sondern nur den Strahlensatz. Dann ersetzt du in A=a*b z. Bsp durch den Ausdruck mit a und hast nur nocha)
Du kannst das Dreieck natürlich auch in ein Koordinatensystem zeichnen, am besten eine kathete (12 cm) auf die x-Achse, die Hypothenuse auf ner Geraden durch 0, die 2.te Kathete parallel zur y. Achse. dann hast du die Hyp als y=m*x und da liegt ein Punkt deines Rechtecks drauf,  bei x1, die eine Länge ist dann Kathete -x1, z.Bsp 12-x1  die andere m*x1. A=m*x1*(12-x1)
kannst du das Max. dieser Parabel finden?
Gruss leduart

Bezug
        
Bezug
extremwertaufgaben: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Sa 23.02.2008
Autor: ange-yeah

alos auch hier mein ähnliches ergebnis!

EB: A(a,b)=a*b=max!

NB: f(x)=mx+b
f(0)=8=b
f(12)=0
m=-8/12=-0,67
f(x)=-0,67x+8
b=-o,67a+8

ZF: A(a)= a*(-0,67a+8)
[mm] =0,67a^2+8a [/mm]

Extremum bestimmen:notw Bed:A´(a)=-1,34a+8
-1,34a=-8
a=5,97

einsetzen in NB: b=-0,67a-5,97+80=4

Maximum bestimmen:A(5,97)=23,88   H(5,97/23,88)

Bezug
                
Bezug
extremwertaufgaben: Korrektur
Status: (Antwort) fertig Status 
Datum: 18:14 So 24.02.2008
Autor: Lady_Eisenherz

Hallo!

Jep, das Ergebnis ist richtig.

Gruß,
Lady Eisenherz


Bezug
                        
Bezug
extremwertaufgaben: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:48 So 24.02.2008
Autor: ange-yeah

auch hier vielen dank, auch an leduart!!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]