matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Schulmathe
  Status Primarstufe
  Status Mathe Klassen 5-7
  Status Mathe Klassen 8-10
  Status Oberstufenmathe
    Status Schul-Analysis
    Status Lin. Algebra/Vektor
    Status Stochastik
    Status Abivorbereitung
  Status Mathe-Wettbewerbe
    Status Bundeswettb. Mathe
    Status Deutsche MO
    Status Internationale MO
    Status MO andere Länder
    Status Känguru
  Status Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblemeextremwertaufgabe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Extremwertprobleme" - extremwertaufgabe
extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Di 26.02.2008
Autor: Simge

Aufgabe
Ein kegel mit der Kantenlänge s= 12 cm soll ein möglichst großes Volumen haben. (aus der mittelstfe: Kegelvolumen, Satz des Pythagoras)

hallo!

also erstens komme ich mit aufgaben, wie diese hier nicht klar. Deshalb wär es vielleicht auch sehr hilfreich, wenn mir jemand das anhand dieser aufabe erklären könnte.

also zuerst soll man eine Zielfunktion bilden.Das ist dann glaub ich V= [mm] \bruch{1}{3}\*\pi\*r^2\*h [/mm]

so un djetzt muss mann r und h rausfinden, dass heißt ich muss den Satz des Pythagoras anwenden.

[mm] r^2= h^2+s^2 [/mm]
[mm] r^2= h^2+12^2 [/mm] die wurzel ziehen
r=  h+12

so und das muss man in die Zielfunktion einsetzen? Wenn ja kommt bei mir was sehr merkwürdiges raus! Wäre sehr lieb wenn mir jemand das vorrechnen könnte, damit ich das nachvollziehen kann und das Prinzip verstehe.

Liebe Grüße

simge

        
Bezug
extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 20:04 Di 26.02.2008
Autor: Zwerglein

Hi, Simge,

> Ein kegel mit der Kantenlänge s= 12 cm soll ein möglichst
> großes Volumen haben. (aus der mittelstfe: Kegelvolumen,
> Satz des Pythagoras)
>  
> also erstens komme ich mit aufgaben, wie diese hier nicht
> klar. Deshalb wär es vielleicht auch sehr hilfreich, wenn
> mir jemand das anhand dieser aufgabe erklären könnte.
>  
> also zuerst soll man eine Zielfunktion bilden.Das ist dann
> glaub ich V= [mm]\bruch{1}{3}\*\pi\*r^2\*h[/mm]

Passt scho!
  

> so und jetzt muss man r und h rausfinden, das heißt ich
> muss den Satz des Pythagoras anwenden.

Naja: Du musst halt sehen, dass Du einen Zusammenhang zwischen r und h findest, damit eines von beiden "verschwindet"!
  

> [mm]r^2= h^2+s^2[/mm]

Da zwischen h und r der rechte Winkel liegt, ist doch eher:
[mm] h^{2} [/mm] + [mm] r^{2} [/mm] = [mm] 12^{2} [/mm] = 144
<=> [mm] r^{2} [/mm] = 144 - [mm] h^{2} [/mm]

>  [mm]r^2= h^2+12^2[/mm] die wurzel ziehen
>  r=  h+12

HHHIIIIILLLLFFFFEEE !!!
Was ist denn da passiert?!
Mir klappt's die Zehennägel hoch!!!
Wo bleiben Deine Algebra-Kenntnisse?!
Seit wann kann man aus einer Summe die Wurzel ziehen?!
Ist etwa [mm] \wurzel{25} [/mm] = [mm] \wurzel{16+9} [/mm] = 4 + 3 = 7 ?!!
Mach' so was NIE, NIE WIEDER!
Vater Gauß dreht sich im Grabe rum!

Außerdem: Wozu das Ganze?!
In Deiner Formel für V kommt doch ein [mm] r^{2} [/mm] vor!
Setz' das doch einfach ein und Du kriegst eine wunderschöne Funktion in der Variablen h, nämlich (bereits verbessert!):

V(h) = [mm] \bruch{1}{3}*\pi*(144 [/mm] - [mm] h^{2})*h [/mm]

Jetzt brauchst Du "nur noch" eine geeignete Definitionsmenge - dann kann die eigentliche Aufgabe (Ableiten, Ableitung =0 setzen, Randvergleich) losgehen!

Zeig', was Du kannst, Junge (oder Mädel?)!

mfG!
Zwerglein

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.schulmatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]