explizite Bildungsvorschrift < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:54 Fr 25.02.2005 | Autor: | Duke |
Hallo alle miteinander!
Ich hätte da mal eine Frage zum Thema Folgen:
Ich muss zu der rekursiven Folge mit
a 1 =0 und a(n)=a n-1 +2*(n+1) die ersten 5 Folgeglieder berechnen und eine explizite Darstellung angeben.
Die Folgeglieder habe ich bereits: (Vielleicht könnte jemand die Ergebnisse bestätigen)
n=1 --> a=0
n=2 --> a=6
n=3 --> a=14
n=4 --> a=24
n=5 --> a=36
So: Ich hab jetzt auch mal wegen der expliziten Vorschrift überlegt!
Mein Problem:
Das a n-1 + ..... deutet auf eine arithmetische Folge hin.
Das 2*(n+1) meiner Meinung aber auf eine geometrische.
Muss ich die explizite Gleichung jetzt geometrisch oder arithmetisch aufstellen??????
P.S.: Mein Versuch einer expliziten Gleichung lautet:
a(n)=a 1 +2n*(n+1)
(also als arithmetische Gleichung)
Wenn ich jetzt hier aber n=5 einsetzt kommt a=60 raus)
*VERZWEIFEL*
Hoffe jemand kann mir helfen!!!!!!
Vielen Dank im Vorraus
Gruß Duke
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:15 Fr 25.02.2005 | Autor: | andreas |
hi
zu der expliziten darstellung:
schreibe dir die ersten folgenglieder mal aus, dann erhälst du:
[m] a_2 = a_1 + 2(2+1) = 2(2+1) , \quad a_3 = a_2 + 2(3+1) = 2(2+1) + 2(3+1), \; a_4 = a_3 + 2(4+1) = 2(2 + 1) + 2(3+1) + 2(4+1), \; \hdots [/m]
das errinnert doch ein wenig an die summendarstellung für natürliche zahlen, damit solltest du eine explizite darstellung für die folge erhalten. probiere das doch mal, wenn du nicht weiterkommst kannst du dich ja nochmal melden.
grüße
andreas
ps ich bin auf [m] a_n = n^2 + 3n - 4 [/m] gekommen - ist aber mit vorsicht zu geniesn, da kann auch ein rechenfehler drinn sein
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:47 Fr 25.02.2005 | Autor: | Loddar |
Hallo Duke!
> Mein Problem:
> Das a n-1 + ..... deutet auf eine arithmetische
> Folge hin.
Das kannst Du ja ganz leicht überprüfen. Bei einer arithmetischen Folge ist die Differenz zwischen zwei aufeinanderfolgenden Gliedern konstant: [mm] $a_{n+1} [/mm] - [mm] a_n [/mm] \ = \ d \ = \ const.$
In Deinem Beispiel:
[mm] $a_2 [/mm] - [mm] a_1 [/mm] \ = \ 6 - 0 \ = \ 6$
[mm] $a_3 [/mm] - [mm] a_2 [/mm] \ = \ 14 - 6 \ = \ 8 \ [mm] \not= [/mm] \ 6$ Widerspruch!!
> Das 2*(n+1) meiner Meinung aber auf eine geometrische.
Auch hier dieselbe Vorgehensweise, denn bei einer geometrischen Folge ist ja der Quotient zwischen zwei aufeinanderfolgenden Gliedern konstant: [mm] $\bruch{a_{n+1}}{a_n} [/mm] \ = \ q \ = \ const.$
[mm] $\bruch{a_3}{a_2} [/mm] \ = \ [mm] \bruch{14}{6} [/mm] \ = \ [mm] \bruch{7}{3}$
[/mm]
[mm] $\bruch{a_4}{a_3} [/mm] \ = \ [mm] \bruch{24}{14} [/mm] \ = \ [mm] \bruch{12}{7} [/mm] \ [mm] \not= [/mm] \ [mm] \bruch{7}{3}$ [/mm] Widerspruch 1 !!
Außerdem wird in einer geometrischen Folge nie die Null auftauchen! Widerspruch 2 !!
Nun aber zu meinem Alternativ-Vorschlag, diese Aufgabe zu lösen ...
Bilde doch einfach mal die Differenzen zwischen den einzelnen Folgengliedern (daß diese zunächst nicht konstant sein werden, haben wir ja bereits geklärt).
Daher werden wir das mit den einzelnen Differenzen gleich noch einmal machen ...
[mm] $a_n$ [/mm] : 0 6 14 24 36 ...
[mm] $\Delta_n$ [/mm] : 6 8 10 12 ...
[mm] $\Delta^2_n$ [/mm] : 2 2 2 ...
Anscheinend haben wir in in der 2. Reihe einen konstanten Abstand.
Da dies' in der 2. Reihe (= 2. Durchgang der Differenzenbildung) auftritt, handelt es sich bei Deiner expliziten Formel um ein Polynom 2. Grades: [mm] $a_n [/mm] \ = \ [mm] A*n^2 [/mm] + B*n + C$
(Denn mathematischen Beweis hierfür muß ich Dir hier leider schuldig bleiben ... )
Die Koeffizienten $A$, $B$ und $C$ kannst Du jetzt durch Einsetzen und anschließendes Lösen des Gleichungssystemes ermitteln.
[mm] $a_1 [/mm] \ = \ [mm] A*1^2 [/mm] + B*1 + C \ = \ A + B + C \ = \ 0$
[mm] $a_2 [/mm] \ = \ [mm] A*2^2 [/mm] + B*2 + C \ = \ 4A + 2B + C \ = \ 6$
[mm] $a_3 [/mm] \ = \ [mm] A*3^2 [/mm] + B*3 + C \ = \ 9A + 3B + C \ = \ 14$
Jedenfalls erhalte ich auch dasselbe Ergebnis wie Andreas:
[mm] $a_n [/mm] \ = \ [mm] n^2 [/mm] + 3n - 4$
Gruß
Loddar
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:54 Fr 25.02.2005 | Autor: | Duke |
Hi Andreas, Hi Loddar
vielen vielen Dank für eure schnellen Antworten!
@Loddar: nach dem Beweis werd ich mich mal noch umschauen!
Wie gesagt: VIELEN DANK!!!
Gruß Duke
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:58 Fr 25.02.2005 | Autor: | andreas |
Hallo Loddar und Duke
um den zusammenhang zwischen den beiden ansätzen vielleicht nochmal anzudeuten möchte ich einen möglichen beweis für die aussage von Loddar skizzieren, dass aus konstanter zweiter differenz folgt, dass die explizite darstelung der folge dann ein quadratisches polynom sein muss.
dazu sei wie in der aufgabe [mm] $(a_n)_{n \in \mathbb{N}}$ [/mm] die ausgangsfolge und [mm] $b_n [/mm] := [mm] a_{n+1} [/mm] - [mm] a_n$ [/mm] die erste differenzfolge und [mm] $c_n [/mm] := [mm] b_{n+1} [/mm] - [mm] b_n$ [/mm] die zweite differenzfolge. dann ergibt sich in anlehnung an Loddars darstellung folgendes schema:
[m] \begin{array}{rccccccccccc} a_n: & \quad & a_1 & & a_2 & & a_3 & & a_4 & & ... &\\
\Delta_n = b_n: & & & b_1 & & b_2 & & b_3 & & b_4 & & ... \\
\Delta_n^2 = c_n: & & & & c_1 & & c_2 & & c_3 & & ... & \end{array} [/m]
nun erhält man für die folge [mm] $(b_n)$, [/mm] da [mm] $(c_n)$ [/mm] konstant und nach definition von [mm] $c_n$ [/mm] gilt: [mm] $b_{n+1} [/mm] - [mm] b_n [/mm] = [mm] c_n [/mm] = [mm] c_1$, [/mm] also umgestellt [mm] $b_{n+1} [/mm] = [mm] c_1 [/mm] + [mm] b_n$ [/mm] und induktiv weiter [mm] $b_{n+1} [/mm] = [mm] c_1 [/mm] + [mm] c_1 [/mm] + [mm] b_{n-1} [/mm] = [mm] c_1 [/mm] + [mm] c_1 [/mm] + [mm] c_1 [/mm] + [mm] b_{n-2}$ [/mm] usw, also insgesamt: [mm] $b_{n+1} [/mm] = [mm] nc_1 [/mm] + [mm] b_1$ [/mm] oder [mm] $b_n [/mm] = [mm] (n-1)c_1 [/mm] + [mm] b_1$. [/mm]
betrachtet man nun die definition von [mm] $b_n$, [/mm] so erhältt man nach eben gewonnener vorschrift [mm] $a_{n+1} [/mm] - [mm] a_n [/mm] = [mm] b_n [/mm] = [mm] (n-1)c_1 [/mm] + [mm] b_1$ [/mm] oder auch hier wieder nach [mm] $a_{n+1}$ [/mm] umgestellt: [mm] $a_{n+1} [/mm] = [mm] (n-1)c_1 [/mm] + [mm] b_1 [/mm] + [mm] a_n$ [/mm] und wieder rekursiv eingesetzt: [mm] $a_{n+1} [/mm] = [mm] (n-1)c_1 [/mm] + [mm] b_1 [/mm] + (n-2)c + [mm] b_1 [/mm] + [mm] a_{n-1} [/mm] = [mm] c_1((n-1) [/mm] + (n-2)) + [mm] 2b_1 [/mm] + [mm] a_{n-1}$ [/mm] usw. insgesamt also [mm] $a_{n+1} [/mm] = [mm] c_1((n-1) [/mm] + (n-2) + [mm] \hdots [/mm] + 1) + [mm] (n-1)b_1 [/mm] + [mm] a_1$ [/mm] oder [mm] $a_n [/mm] = [mm] c_1((n-2) [/mm] + (n-3) + [mm] \hdots [/mm] + 1) + [mm] (n-2)b_1 [/mm] + [mm] a_1$. [/mm] an dieser stelle taucht wieder die formel zur summation der ersten $n-2$ natürlichen zahlen auf, es gilt nämlich $(n-2) + (n-3) + [mm] \hdots [/mm] + 1 = [mm] \frac{(n-2)(n-1)}{2} [/mm] = [mm] \frac{n^2 - 3n + 2}{2}$. [/mm] in die obige formel eingesetzt:
[m] \begin{array}{rcl} a_n & = & c_1 \frac{n^2 - 3n + 2}{2} + (n-1)b_1 + a_1 \\ & = & \frac{c_1}{2} n^2 + (b_1 - \frac{3}{2}c_1)n + (c_1 - b_1 + a_1) \end{array} [/m].
setzt man nun die definition von [mm] $b_1$ [/mm] bzw. [mm] $c_1$ [/mm] wieder ein, also [mm] $b_1 [/mm] = [mm] a_2 [/mm] - [mm] a_1$ [/mm] und [mm] $c_1 [/mm] = [mm] b_2 [/mm] - [mm] b_1 [/mm] = [mm] (a_3 [/mm] - [mm] a_2) [/mm] - [mm] (a_2 [/mm] - [mm] a_1) [/mm] = [mm] a_3 [/mm] - [mm] 2a_2 [/mm] + [mm] a_1$, [/mm] so erhält man insgesamt:
[m] \begin{array}{rcl} a_n & = & \frac{a_3 - 2a_2 + a_1}{2} n^2 + (a_2 - a_1 - \frac{3}{2}(a_3 - 2a_2 + a_1))n + ((a_3 - 2a_2 + a_1) - (a_2 - a_1) + a_1) \\ & = & (\frac{1}{2}a_3 - a_2 + \frac{1}{2}a_1) n^2 + (-\frac{3}{2} a_2 + 4 a_2 - \frac{5}{2} a_1)n + (a_3 - 3a_2 + 3a_1) \end{array} [/m].
also sieht man, dass die explizite formel für [mm] $a_n$ [/mm] ein polynom zweiten grades in $n$ ist und man die koeffizienten offensichtlich alleine mit hilfe der folgenglieder [mm] $a_1$, $a_2$ [/mm] und [mm] $a_3$ [/mm] ausrechnen kann! mit diesen bedingungen sollte man die selbe lösung erhlaten, die man auch mit Loddars gleichungssystem erhält!
ich hoffe der beweis ist so halbwegs verständlich - ist eben ein wenig rechenaufwendig. falls jemand einen fehler findet wäre ich für einen hinweis dankbar.
grüße
andreas
|
|
|
|